Programa/Program

42º Congresso Brasileiro de Farmacologia e Terapêutica Experimental

42nd Brazilian Congress of Pharmacology and Experimental Therapeutics

Centro de Convenções de Ribeirão Preto Ribeirão Preto, SP 18-21 de outubro de 2010

Mensagem do Presidente

Message from the President

Prezado(a) Congressista,

Em nome da Diretoria da SBFTE dou as boasvindas ao Congresso de 2010. Dedicamos nossos melhores esforços para proporcionar a todos um Congresso abrangente e interessante. Congresso é o resultado de um ano de duro trabalho da Diretoria, do Conselho, da Secretaria da SBFTE e da Eventus, a empresa que organiza as atividades, pelo que já os agradeço aqui. Nossos patrocinadores, Biolab-Sanus e Atem & Remer como sempre, tornaram possível existência dos Prêmios José Ribeiro do Valle e Inovação que já se tornaram partes nobres do calendário científico da nossa Sociedade. Nossos efusivos agradecimentos a eles. Da mesma forma, faço um agradecimento especial às empresas que aceitaram nosso convite e trouxeram seus estandes para mostrar seus produtos e serviços. Gostaria também de agradecer os nossos patrocinadores institucionais CNPq, CAPES. FAPESP e FAPERJ. Finalmente, agradeço aos avaliadores de Resumos e de Painéis e aos membros das diversas Comissões. Cada um deles despendeu uma parcela importante do seu tempo para que você tenha um Congresso proveitoso. Imperfeições são inerentes a um evento tão complexo como este. Por favor, mandem suas críticas sugestões para e email sbfte@sbfte.org.br.

O Programa de 2010 está mais denso e vamos usar até parte do horário do almoço para atividades. É a conseqüência de estarmos crescendo e melhorando.

Como já informado o Congresso de 2011 será feito em conjunto com a FeSBE na cidade do Rio de Janeiro. A Comissão Científica multi-Sociedade que está montando a programação de atividades está construindo um programa de alto nível e multidisciplinar. Estamos antecipando que o Congresso Conjunto de 2011 será muito proveitoso.

Desejo a você um excelente Congresso e uma ótima estada em Ribeirão Preto. Aproveite para conhecer gente nova, rever os amigos e começar uma colaboração científica.

Um abraço, Jamil Assreuy Presidente do 42º Congresso Brasileiro de Farmacologia e Terapêutica Experimental Dear Colleague,

On behalf of the Brazilian Society of Pharmacology and Experimental Therapeutics I welcome you to the 2010 Congress. We made our best efforts to build an interesting and attractive Congress. It is the result of one year of hard work by the Board of Directors, by the Council, Executive Secretariat and Eventus. I very much thank all these people for their efforts. A big "Thank you" goes to Biolab-Sanus and Atem & Remer who kindly support the two Awards given by the Society, the Prof José Ribeiro do Valle Award and the Innovation Award. I also have to express my gratitude to the companies of scientific equipments and reagents which accepted our invitation to show their products and services. My thanks also to our institutional supporters CNPq, CAPES, FAPESP and FAPERJ. Finally, I thank very much to the Abstract and Poster reviewers whom spend a considerable time and effort to ensure that our standards are met. An event this size is likely to We very have some imperfections. much appreciate your feedback, comments suggestions to the email sbfte@sbfte.org.br.

The 2010 Scientific Program is denser and we will use part of the lunch time for activities. This is the consequence of the Society increase in size and quality.

As already informed, the 2011 Congress will be held in Rio de Janeiro together with the Brazilian Federation of Experimental Biology Societies. A multi-Society scientific Committee is building up a high level program and we are sure that this event will be a success.

I wish you an excellent Congress and a very nice stay in Ribeirão Preto. Take your time to meet old and new friends.

My best regards, Jamil Assreuy President of the Congress

Enterprise **S**upport

Exhibitors

ADInstruments AVS Projetos Delta Livros Inova Insight Equipamentos Científicos – Ensino e Pesquisa Novalab Científica Ltda.

Support

Sociedade Brasileira de Farmacologia e Terapêutica Experimental sbfte@pratica.com.br / sbfte@sbfte.org.br www.sbfte.org.br

Organization

Eventus Planejamento e Organização Rua Marquês de Itu, 408, cj.34/35 São Paulo SP CEP 01223-000 www.eventus.com.br eventus@eventus.com.br Telefone 11 3361 3056 Fax 11 3361 3089

Revisão, **Supervisão e Editoração** Sandra Helena Rocha da Cruz

Committees

Congress **P**resident Jamil Assreuy (UFSC)

Scientific **C**ommittee Cristoforo Scavone (USP) João Batista Calixto (UFSC) Lusiane M. Bendhack (USP)

Maria Christina W. de Avellar (UNIFESP)

Rosely Oliveira Godinho (UNIFESP, Coordenadora)

Organizing **C**ommittee

Jamil Assreuy (UFSC, Coordenador) Mauro Martins Teixeira (UFMG) Rosely Oliveira Godinho (UNIFESP) Teresa C. T. Dalla Costa (UFRGS) Ronaldo A. Ribeiro (UFC)

Poster Committee

Ana Lucia de Aguiar Pires (FIOCRUZ, Secretária) Patrícia M. R. S. Martins (FIOCRUZ, Coordenadora) Sandra Helena P. Farsky (USP)

Teresa C. T. Dalla Costa (UFRGS)

Innovation Award Committee

Fernando de Queiroz Cunha (USP)

Mauro M. Martins (UFMG) Ricardo Amaral Remer

Regina Pekelmann Markus (USP, Coordenadora)

José Ribeiro do Valle Award Committee

Giles A. Rae (UFSC, Coordenador) Gloria E. P. de Souza (USP) Soraya S. Smaili (UNIFESP)

Local **C**ommittee

Fernando de Queiroz Cunha (USP) Glória E. P. de Souza (USP)

Abstract Reviewers

Adair R. S. Santos (UFSC)
Adriana Lino dos Santos (USP)
Albetiza Lobo Araújo (UNICAMP)
Aleksander Roberto Zampronio (UFPR)
Andrea Grabe Guimarães (UFOP)
Antonio Claudio Lucas da Nóbrega (UFF)

Bagnólia Araújo da Silva (UFPB) Bruno Lourenço Diaz (UFRJ) Caden Souccar (UNIFESP) Carlos Renato Tirapelli (USP) Catarina Segreti Porto (UNIFESP) Christianne Bandeira de Melo (UFRJ) Ciomar A Bersani-Amado (UEM) Cláudia F. Benjamim (UFRJ)

Cláudia F. Benjamim (UFRJ) Cláudia Lúcia M. Silva (UFRJ) Cláudia Padovan (USP) Cláudia do Ó Pessoa (UFC)

Claudio Miguel Costa Neto (USP) Cristina Setim Freitas (UFPR) Cristóforo Scavone (USP)

Daniella Bonaventura (USP)

Danielle da Gloria de Souza (UFMG) Edgar Paredes Gamero (UNIFESP) Edson Antunes (UNICAMP)

Eduardo Vera Tibiriçá (FIOCRUZ)

Eliezer J. Barreiro (UFRJ) Elisa Mitiko Kawamoto (USP)

Emer S. Ferro (USP)

Emiliano de Oliveira Barreto (UFAL) Francisco J. R. Paumgarten (FIOCRUZ)

Fúlvio R. Mendes (UNIFESP) Gilberto de Nucci (UNICAMP/USP)

Giles A. Rae (UFSC)

Glória E. P. de Souza (USP) Gustavo Ballejo Oliveira (USP) Iolanda M. Fierro (UERJ) Isac A. de Medeiros (UFPB)

Jamil Assreuy (UFSC)

João Ernesto de Carvalho (UNICAMP) José Eduardo Tanus-Santos (USP)

José Francisco Fracasso (UNESP-Araraquara)

Josélia A. Lima (UFRJ)

Leticia Veras Costa-Lotufo (UFC) Magda Fráguas Serra (FIOCRUZ) Manoel Odorico de Moraes (UFC)

Marcelo N. Muscará (USP)

Marco Aurélio Martins (FIOCRUZ) Maria Cristina de O. Salgado (USP) Maria de Fátima M. Lazari (UNIFESP) Maria Fernanda de Paula Werner (UFPR)

Maria Martha Campos (PUCRS) Marília Zaluar P. Guimarães (UFRJ)

Newton G. de Castro (UFRJ)

Norma Yamanouye (Instituto Butantan) Patricia M. R. S. Martins (FIOCRUZ) Patrícia Torres Bozza (FIOCRUZ) Paulina Sannomiya (USP)

Paulo de Assis Melo (UFRJ)
Pedro Paulo X. Elsas (UFRJ)
Renato S. B. Cordeiro (FIOCRUZ)
Rita de Cássia Elias Estrela (INCa)
Roberto Takashi Sudo (UFRJ)
Ronaldo A. Ribeiro (UFC)
Rosana Camarini (USP)
Rosane Vianna-Jorge (UFRJ)
Rosely Oliveira Godinho (UNIFESP)

Rui D. S. Prediger (UFSC)

Sandra Aurora C. Perez (FIOCRUZ) Soraia Katia Costa Pereira (USP) Stela Maris K. Rates (UFRGS) Stella Regina Zamuner (UNINOVE)

Tania Araújo Viel (USP)

Teresa C. T. Dalla Costa (UFRGS) Thereza C. Barja Fidalgo (UERJ) Valber da Silva Frutuoso (FIOCRUZ) Valéria do Monti N. Cunha (UFRJ) Vinícius Frias Carvalho (FIOCRUZ) Wothan Tavares de Lima (USP) Yara Cury (Instituto Butantan) Zuleica Bruno Fortes (USP) Zulma Silva Ferreira (USP) On-site Poster Reviewers

Adair Roberto Soares dos Santos (UFSC)

Albetiza Lobo Araújo (UNICAMP)

Aleksander Roberto Zampronio (UFPR)

Alessandra Beirith (FURB)

América Scopinho de Oliveira (USP) Ana Luisa Palhares de Miranda (UFRJ)

André Klein (UFMG)

André Sampaio Pupo (UNESP-Botucatu)

Andrea Carla Pessini (USP) Ângela de Castro Resende (UERJ) Bibiana Verlindo de Araújo (UFRGS) Bruno S. Herrera (UNESP-Araraguara)

Caden Souccar (UNIFESP)

Carolina Baraldi Araújo Restini (USP) Carolina Demarchi Munhoz (USP) Célia Aparecida Paulino (UNIBAN)

Christianne Brêtas Vieira Scaramello (UFF)

Ciomar A. Bersani-Amado (UEM) Cláudia F. Benjamim (UFRJ) Cláudia Padovan (USP) Cláudia do Ó Pessoa (UFC) Cristiano Gonçalves Ponte (IFRJ)

Cristina Antoniali Silva (UNESP-Araçatuba)

Cristina Bichels Hebeda (USP)

Cristina Maria Fernandes (Instituto Butantan)

Cristina Setim Freitas (UFPR) Cristóforo Scavone (ICB) Daniel Fernandes (UEPG)

Daniela Dal Secco Abbud (UFSC) Daniela de Almeida Cabrini (UFPR)

Daniella Bonaventura (USP) Disney Oliver Sivieri Jr (UFVJM)

Edna Alves dos Anjos-Valotta (FIOCRUZ)

Edson Antunes (UNIFESP) Eduardo Tamura (USP)

Edvaldo Rodrigues de Almeida (UFPE)

Elena Malpezzi-Marinho (UBC) Eliana Horomi Akamine (USP) Emiliano de Oliveira Barreto (UFAL) Enilton Aparecido Camargo (UFS) Fabíola de Almeida Brito (UFAL) Fabrício Alano Pamplona (UFSC)

Fernanda B. Marinho Priviero (UNESP-Rio Claro)

Fernanda Regina Castro Almeida (UFPI) Fernando de Queiroz Cunha (USP)

Flavio Aimberê Soares de Carvalho (UNICASTELO)

François G. Noel (UFRJ)

Gilberto de Nucci (UNICAMP/USP)

Giles A. Rae (UFSC)

Gloria E. P. de Souza (USP)

Helena Serra Azul Monteiro (UFC)

Heloisa Helena Araújo Ferreira (USF)

Hudson S. Buck (FCMSCSP)

Hugo Caire de Castro Faria Neto (FIOCRUZ)

Janetti Nogueira de Francischi (UFMG)

João Ernesto de Carvalho (UNICAMP)

José Francisco Fracasso (UNESP-Araraguara)

Josélia A. Lima (UFRJ) Juliano Ferreira (UFSM)

Laura Letícia Souza (USP)

Leonardo Resstel Barbosa Moraes (USP)

Letícia Lintomen (UNICAMP) Leticia Veras Costa-Lotufo (UFC) Lusiane Maria Bendhack (USP) Marcelo Gomes Damário (USP) Marcelo N. Muscará (USP)

Maria de Fátima M. Lazari (UNIFESP) Maria Fernanda de Paula Werner (UFPR)

Maria Martha Campos (PUCRS) Marília Zaluar P. Guimarães (UFRJ)

Michel Fleith Otuki (UFPR) Newton G. de Castro (UFRJ) Patrícia Torres Bozza (FIOCRUZ) Paulo César Ghendini (UFG) Paulo de Assis Melo (UFRJ)

Pedro Augusto Carlos Magno Fernandes (USP)

Rita Tostes (USP)

Roberto César Pereira Lima Júnior (UFC) Roberto Kenji Nakamura Cuman (UEM)

Ronaldo A. Ribeiro (UFC)

Rosa M. Ribeiro do Valle Nicolau (UFSC)

Rosana I. Reis (USP)

Rosely Oliveira Godinho (UNIFESP)

Rui D. S. Prediger (UFSC)

Sandra Helena P. de Oliveira (UNESP-Araçatuba)

Silvia Dal Bó (UFSC) Simone A. Teixeira (USP)

Soraia Katia Costa Pereira (USP) Stela Maris K Rates (UFRGS) Stella Regina Zamuner (UNINOVE)

Tania Araújo Viel (USP) Tarcilia Aparecida Silva (USP) Tereza C. T. Dalla Costa (UFRGS) Thereza Christina Barja Fidalgo (UERJ)

Thiago Mattar Cunha (USP)

Valber da Silva Frutuoso (FIOCRUZ) Valéria do Monti N. Cunha (UFRJ) Valquíria Camin Bortoli (USP) Vinícius Frias Carvalho (FIOCRUZ) Waldiceu Aparecido Verri Jr. (UEL) Yara Cury (Instituto Butantan) Zulma Silva Ferreira (USP)

		Index
Informações úteis/Useful Information		8
Schematic Program		9
Scientific Program		
18 October 2010		10
19 October 2010		10
20 October 2010		12
21 October 2010		14
Poster Session 1		
01. Cellular and Molecular Pharmacolo		16
02. Neuropharmacology (02.001-02.022		16
03. Psychopharmacology (03.001-03.01	12)	18
04. Inflammation (04.001-04.046)		18
05. Pain and Nociception (05.001-05.02		21
06. Cardiovascular and Renal Pharmac		23
09. Natural Products and Toxinology (0		25
11. Clinical Pharmacology, Pharmacoki		
Pharmacogenomics and Preclinical	Toxicology (11.001-11.011)	27
Poster Session 2		
01. Cellular and Molecular Pharmacolo		29
02. Neuropharmacology (02.023-02.04		29
03. Psychopharmacology (03.013-03.02	24)	31
04. Inflammation (04.047-04.092)		31
05. Pain and Nociception (05.027-05.05		34
06. Cardiovascular and Renal Pharmac		36
09. Natural Products and Toxinology (0	,	38
11. Clinical Pharmacology, Pharmacoki		
Pharmacogenomics and Preclinical	Toxicology (11.012-11.022)	40
Poster Session 3	(24, 222, 24, 242)	
01. Cellular and Molecular Pharmacolo		42
02. Neuropharmacology (02.045-02.05)		42
03. Psychopharmacology (03.025-03.03	36)	43
04. Inflammation (04.093-04.138)		44
05. Pain and Nociception (05.053-05.07)		47
06. Cardiovascular and Renal Pharmac		49
07. Endocrine and Gastrointestinal Pha		51
08. Respiratory, Urinary and Reproduc		52
09. Natural Products and Toxinology (0		52
10. Cancer and Cell Proliferation (10.00		55
11. Clinical Pharmacology, Pharmacoki		
Pharmacogenomics and Preclinica	Toxicology (11.023-11.034)	56
Lecture Abstracts		58
Author Index		81

Painéis

A Sessão de Painéis será realizada nos dias 19/10 das 18h30 as 20h30; 20/10 das 18h00 as 20h00 e 21/10 das 10h10 as 12h10, períodos em que os autores deverão permanecer ao lado dos painéis. O painel deverá ser afixado no dia da apresentação, às 8h00 da manhã, devendo ser retirado após o encerramento da sessão.

Young Investigator Session

Sessões de apresentação oral com a duração de 1h15. Esta sessão será coordenada por um pesquisador sênior que apresentará o tema e dirigirá as discussões ao final das apresentações, quando será dada oportunidade de debate entre os apresentadores. Após o debate, a sessão será encerrada pelo coordenador, que fará uma breve avaliação da experiência.

Certificados:

Conferências, simpósios e comunicações orais: nas salas, no horário de apresentação.

Pôsteres: durante a exposição.

Cursos: nas salas, no último dia do curso, para alunos que assistiram a no mínimo duas aulas.

Media-Desk

O Media-Desk estará funcionando das 08h00 às 18h00.

Os congressistas deverão entregar seu material com duas horas de antecedência.

Todas as salas estarão equipadas com *data show*. Caso haja necessidade de material especial, favor informar no *Media-Desk*.

Congressistas com apresentações marcadas para 08h00 deverão entregar seu material e demais recomendações na véspera de sua apresentação.

Secretaria

A Secretaria estará aberta de 08h00 as 18h00, e contará com um painel para informações, recados e eventuais alterações de programa.

Crachás

O uso de crachá é obrigatório em todas as atividades e em áreas de circulação

No caso de perda será cobrada uma taxa para emissão da segunda via do crachá.

Resumos

Os resumos apresentados nas sessões de painéis estarão disponíveis na Home Page da Sociedade. http://www.sbfte.org.br

Useful information

Media-Desk

Media-Desk will be open from 8 am to 6 pm. Please, leave your material at Media Desk at least two hours before your presentation. All rooms have datashow. If you need any other equipment, please inform Media Desk as soon as possible.

Secretariat

Congress Secretariat will be open from 8 am to 6 pm. A board for messages, changes in the Programs, etc will be available

Badges

Please wear your badge during all venue.

Resumos

Abstracts presented at the poster session will be available at the Society site http://www.sbfte.org.br

18/10/2010	(Monday)
09h00-12h00	Reunião do Conselho Deliberativo da SBFTE (somente para Membros do Conselho e Diretoria)/Meeting of the Deliberative Council (only for Members of the Council and Society Board)
13h30-16h30	Fórum Permanente de Pós-Graduação em Farmacologia da SBFTE (somente para Representantes dos Programas de Pósgraduação em Farmacologia, Conselho e Diretoria da SBFTE)/SBFTE Permanent Forum of Graduate Programs in Pharmacology (only for Heads of Pharmacology Graduate Programs, Council and Society Board)
14h00	Abertura da Secretaria do Congresso e da SBFTE/ Venue Secretariat and Society Secretariat Opening
19h00-19h30	Opening Session
19h30-20h30	Opening Conference
21h00	Cocktail
19/10/2010	
08h00-09h00	Courses
09h10-10h10	Conferences
10h10-10h30	Coffee-break
10h30-12h00	Symposia
12h10-14h10	Almoço e Pós-graduação / Lunch and Post-graduation
14h20-15h50	Young Investigator Presentation
15h50-16h20	Coffee-break
16h20-18h20	Symposia
18h30-20h30	Posters Session
20h30-22h30	Assembleia Geral da SBFTE / SBFTE General Assembly
20/10/2010 (Wednesday)	
08h00-09h00	Courses
09h10-10h10	Conference
10h10-10h30	Coffee-break
10h30-12h00	Symposia
12h10-13h50	Almoço e Inovação / Lunch and Innovation
14h00-16h00	José Ribeiro do Valle Award Symposium
16h00-16h20	Coffee-break
16h20-17h50	Symposia
18h00-20h00	Posters Session
21/10/2009	· • •
08h00-09h00	Courses
09h10-10h10	Conferences
10h10-12h10	Posters Session & Coffee-break
12h10-13h10	Conferences
13h20-13h40	President's Remarks
13h30	Awarding Session

18 October, 2010 (Monday)

09h00-12h00

Room Turquesa

Reunião do Conselho Deliberativo da SBFTE (somente para Membros do Conselho e Diretoria)/Meeting of the Deliberative Council (only for Members of the Council and Society Board)

13h30-16h30

Room Turquesa

Fórum Permanente de Pós-Graduação Farmacologia SBFTE da (somente para Representantes dos Programas de Pósgraduação Farmacologia, Conselho em Diretoria da SBFTE)/SBFTE Permanent Forum of Graduate Programs in Pharmacology (only for Heads of Pharmacology Graduate Programs, Council and Society Board)

14h00

Abertura da Secretaria do Congresso e da SBFTE/Venue Secretariat and Society Secretariat Opening

19h00-19h30

Room Rubi

Opening Session

19h30-20h30

Room Rubi

Opening Conference

Ligand-directed signaling bias and its potential for new therapeutics

Roger J. Summers (Monash Institute, Australia) Presenter: Jamil Assreuy (UFSC)

21h00

Cocktail

19 October 2010 (Tuesday)

08h00-09h00 **Courses**

Room Ametista

Pharmacological modulation of memory during aging and neurodegenerative diseases

Chairperson: Hudson de Sousa Buck (FCMSCSP)

• 1st Class: Pharmacology of learning and memory formation

Hudson de Sousa Buck (FCMSCSP)

Room Topázio

Writing a scientific paper: theory and practice Chairperson: Y. S. Bakhle (Imperial College, UK)

• 1st Class: Theory on how to write a scientific paper

Y. S. Bakhle (Imperial College, UK)

Room Rubi

Quantitative and qualitative analysis of drugreceptor interactions

Chairperson: André Sampaio Pupo (UNESP-Botucatu)

• 1st Class: Theoretical and practical aspects of dose-response curves plotting Fernando Morgan de Aguiar Corrêa (USP)

Room Turquesa

Biology of kinase proteins: exemplification with the immune system

Chairperson: Daniel Santos Mansur (UFMG)

• 1st Class: The proteins kinase and their role in the cellular immune response Aristobolo M. Silva (UFMG)

09h10-10h10 Conferences

Room Rubi

Anti-inflammatory GPCRs as targets for novel therapeutics

Mauro Perretti (Queen Mary University of London, UK)

Presenter: Sandra Helena P. Farsky (USP)

Room Topázio

Pharmacomimetics of flow-mediated endothelial vasoprotection

10h10-10h30 Coffee-break

10h30-12h00 **Symposia**

Room Rubi

G protein coupled receptors as drug targets: the role of G protein coupled receptor kinases (GRKs) beta-arrestins.

Chairperson: Fernando de Queiroz Cunha (USP)

- Roles of GRKs and beta-arrestins activities in the regulation of $\beta 2$ adrenergic signaling Jamil Assreuy (UFSC)
- Roles of GRKs and beta-arrestins activities in the regulation of CXCR2 chemotactic receptor signaling during severe sepsis José Carlos Alves-Filho (USP)
- Therapeutic potential of blocking PI3Kg in inflammation

Mauro Martins Teixeira (UFMG)

Room Ametista

Antioxidants as therapeutic agents in epilepsy, late dyskinesia, inflammation and pain models Chairperson: Carlos Fernando de Mello (UFSM)

- Do antioxidants cause analgesia?
 Adair Roberto Soares dos Santos (UFSC)
- Antioxidants as anti-inflammatory agents
 Juliano Ferreira (UFSM)
- *Can antioxidants prevent dyskinesia?* Roberto Frussa-Filho (UNIFESP)

Room Topázio

Technology transfer x entrepreneurship in the institutions of science and technology Chairperson: Claudia do Ó Pessoa (UFC)

- Binomial of world progress: innovation and entrepreneurship Cristina M. Quintella (UFBA)
- From idea to the market The way of innovation to the customer
 Gerd Wassenberg (Gelsenkirchen University, Germany)
- Biotechnology innovation in developing countries: products, interaction with universities and funding. Experience of FK-Biotechologia S.A. in Brazil Fernando Thomé Kreutz (Fk Biotechologia)

12h10-14h10

Room Topázio

Almoço e Pós-graduação / Lunch and Graduate Programs in Pharmacology

Chairperson: Cristoforo Scavone (USP)

- Benedito H. Machado(USP)
- Jose Cipolla-Neto (ICB-USP)

14h20-15h50

Young Investigator Presentation

Room Rubi

New potential pharmacological approaches to treat central nervous system disorders

Chairperson: Francisco Silveira Guimarães (USP)

- 02.023 The selective A-type K⁺ current blocker Tx3-1 rescues memory of mice submitted to a model of Alzheimer's disease. Gomes GM¹, Dalmolin GD², Ferreira J¹, Gomez MV², Rubin MA¹ ¹UFSM - Química, ²UFMG -Farmacologia
- 03.001 Activation of CB1 receptors reduces marble burying behavior in mice. Casarotto PC¹, Gomes FV¹, Resstel LBM¹, Guimarães FS¹ ¹FMRP-USP - Pharmacology
- 02.035 Acute but not chronic administration of pioglitazone promoted behavioral and neurochemical protective effects in the MPTP model of Parkinson's disease. Barbiero JK, Santiago RM, Lima MMS, Ariza D, Morais LH, Andreatini R, Vital MABF UFPR Farmacologia
- 02.037 Inhibition of spinal c-Jun-N-terminal kinase (JNK) after spinal cord injury improves

locomotor performance. Martini AC¹, Forner S¹, Koepp J², Rae GA¹ ¹UFSC - Pharmacology, ²UFSC - Chemical and Food Engineering

Room Ametista

Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology Chairperson: Teresa Cristina Tavares Dalla Costa (UFRGS)

- 11.028 Susceptible NOS3 (endothelial nitric oxide synthase) gene haplotypes in hypertension and resistant hypertension. Luizon MR¹, Sandrim VC², Izidoro-Toledo TC¹, Coelho EB³, Tanus-Santos JE¹¹FMRP-USP Farmacologia, ²Santa Casa de Belo Horizonte, ³FMRP-USP Clínica Médica
- 11.018 Adverse reactions to chemotherapy for breast cancer and impact of genetic polymorphisms. Martins CL¹, Índio-do-Brasil V¹, Telles C¹, Vianna-Jorge R², Koifman S³ ¹INCa - Farmacologia, ²UFRJ - Farmacologia Básica e Clínica ³ENSP-FIOCRUZ -Saúde Pública e Meio Ambiente
- 11.011 Endothelial nitric oxide synthase (ENOS) haplotypes associated with aura in women with migraine. Gonçalves FM¹, Oliveira AM², Speciali JG³, Izidoro-Toledo TC⁴, Silva PS¹, Dach F³, Tanus-Santos JE⁴ ¹UNICAMP − Farmacologia, ²USP − Farmacologia, ³FMRP − Neurologia, ⁴FMRP-USP − Farmacologia
- 11.031 Interference of matrix metalloproteinase (MMP)-9 genotypes and haplotypes in the responsiveness antihypertensive therapy of patients with preeclampsia or gestational hypertension. Palei ACT1, Sandrim VC2, Cavalli RC3, Gerlach RF4, Tanus-Santos JE5 1FCM - UNICAMP -Farmacologia, ²Santa Casa de Belo Horizonte - Farmacologia, ³FMRP-USP - Ginecologia e Obstetrícia, ⁴FORP-USP - Morfologia, ⁵FMRP-USP - Farmacologia

Room Topázio

Natural Products

Chairperson: João Batista Calixto (UFSC)

- 09.008 Antinociceptive effect of uliginosin B is mediated by the activation of dopaminergic and opioid systems. Stolz ED¹, Viana AF², Haas JS², Hasse DR², Von Poser GL², Costentin J³, Do Rego JC³, Rates SMK²
 ¹UFRGS - Neurociências, ²UFRGS - Farmácia, ³Université de Rouen - Neuropsychopharmacologie Expérimentale
- 09.017 The antinociceptive effect of triterpene 3beta, 6beta, 16beta-trihydroxylup-20(29)-ene against acute and chronic pain in mice: the involvement of glutamatergic system. Longhi-Balbinot DT¹, Lanznaster D¹, Martins DF¹, Villarinho JG², Ferreira J², Facundo VA³, Santos ARS¹ ¹UFSC - Ciências Fisiológicas, ²UFSM - Química, ³UNIR - Química
- 09.022 *Lonomia obliqua* venom-induced proinflammatory profile in endothelial cell *in vitro*

- and increased leukocyte trafficking *in vivo*. Nascimento-Silva V¹, Rodrigues GS¹, Moraes JA¹, Cyrino FZ², Bouskela E², Guimarães JA³, Barja Fidalgo TC¹ ¹UERJ Farmacologia, ²UERJ Fisiologia, ³UFRGS Farmacologia
- 09.031 Modulation of T lymphocyte and eosinophil functions *in vitro* by natural tetranortriterpenoids isolated from *Carapa guianensis* Aublet. Ferraris FK¹, Rodrigues R², Silva VP², Figueiredo MR², Penido C¹, Henriques MGMO¹ ¹Farmanguinhos-FIOCRUZ Farmacologia Aplicada, ²Farmanguinhos-FIOCRUZ Química de Produtos Naturais

15h50-16h20 Coffee-break

16h20-18h20 Symposia

Room Rubi

Brain: where inflammation and neuroscience meet

Chairperson: Mauro M. Teixeira (UFMG)

- Chemokines and inflammation in the CNS Antonio Lúcio Teixeira (UFMG)
- Neurochemical and behavioral changes after systemic inflammation and sepsis Felipe dal Pizzol (UNESC)
- New vistas for an old friend: Lipoxin A4 as an allosteric endocannabinoid in the brain Fabrício Pamplona (UFSC)
- Stress and inflammation Moises Evandro Bauer (PUCRS)

Room Ametista

Body weight: its determinants and its consequences

Chairperson: Rita de C. A. Tostes (USP)

- *The impact of stress on body weight gain* Ruth Harris (Medical College of Georgia, EUA)
- High- or low-salt diet: effect on body weight, food intake and energy balance Joel Claudio Heimann (USP)
- Hypertension, kidney disease, and cardiovascular outcomes in childhood: is there a role for birth weight
 Maria do Carmo Pinho Franco (UNIFESP)
- Metabolic determinants of cardiovascular disease in obesity
 David Stepp (Medical College of Georgia, EUA)

Room Topázio

Diabetes mellitus: mechanisms of vascular dysfunction, risk factor associations and potential treatment targets

Chairperson: Edson Antunes (UNICAMP)

- Vascular bed specific remodeling in type 2
 Diabetes
 Loren Eugene Wold (Nationwide Children's
 Hospital, EUA)
- Vascular reactivity of femoral arteries from diabetic trained rats

- Angelina Zanesco (UNESP-Rio Claro)
- Potential application of flavonoids in the therapeutics of diabetes mellitus Gabriel Forato Anhê (UNICAMP)
- Erectile dysfunction and diabetes
 Kanchan Chitaley (University of Washington, USA)

18h30-20h30

Room Esmeralda

Poster Session 1

- 01. Cellular and Molecular Pharmacology 01.001to 01.013
- 02. Neuropharmacology 02.001 to 02.022
- 03. Psychopharmacology 03.001 to 03.012
- 04. Inflammation 04.001 to 04.046
- 05. Pain and Nociception 05.001 to 05.026
- 06. Cardiovascular and Renal Pharmacology 06.001 to 06.026
- 09. Natural Products and Toxinology 09.001 to 09.035
- Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology 11.001-11.011

20h30-22h30

Room Topázio

Assembleia Geral da SBFTE / SBFTE General Assembly

20 October, 2010 (Wednesday)

08h00-09h00 Courses

Room Ametista

Pharmacological modulation of memory during aging and neurodegenerative diseases

Chairperson: Hudson de Sousa Buck (FCMSCSP)

 2nd Class: Neuropharmacological changes along the aging process
 Tânia Araújo Viel (USP)

Room Topázio

Writing a Scientific Paper: Theory and Practice Chairperson: Y. S. Bakhle (Imperial College, UK)

2nd Class: Practical Session 1
 Y. S. Bakhle (Imperial College, UK)

Room Rubi

Quantitative and qualitative analysis of drugreceptor interactions

Chairperson: André Sampaio Pupo (UNESP-Botucatu)

• 2nd Class: Analysis of competitive antagonism André Sampaio Pupo (UNESP-Botucatu) Room Turquesa

Biology of kinase proteins: exemplification with the immune system

Chairperson: Daniel Santos Mansur (UFMG)

• 2ndClass: Pi3kinase and inflammation Remo de Castro Russo (UFMG)

09h10-10h10 Conferences

Room Rubi

Toll-like receptors: emerging roles in reproductive physiology and therapeutics Mark Hedger (Monash Institute, Australia) Presenter: Maria Christina W. de Avellar (UNIFESP)

Room Topázio

Indoleamine 2,3-dioxygenase (IDO) inhibitors: from bench to bedside.

Andrew L. Mellor (Medical College of Georgia, EUA)

Presenter: Fernando de Queiroz Cunha (USP)

10h10-10h30 Coffee-break

10h30-12h00 Symposia

Room Rubi

Cannabinoids: pharmacology and cell signaling Chairperson: Camila Squarzoni Dale (Hospital Sírio Libanês)

- Novel endogenous peptide agonists of cannabinoid receptors
 Lakshmi Devi (Mount Sinai School of Medicine, USA)
- Therapeutic potential and mechanisms of nonpsychotropic phytocannabinoids
 Francisco Silveira Guimarães (USP)
- Hemopressin: a new target for drug development
 Camila Squarzoni Dale (Hospital Sírio Libanês)

Room Ametista

Computational, structural and ligand-based methods in drug design

Chairperson: Maria Christina W. de Avellar (UNIFESP)

- Inverse agonism in G-protein coupled receptors (GPCRs) seen in light of classical mechanisms of receptor activation

 Laerte Oliveira (UNIFESP)
- Computational chemistry underpinning carbohydrate drug discovery Ivone Carvalho (USP)
- Structure-based discovery of novel antiinflammatory protein kinase inhibitors.
 Carlos Alberto Manssour Fraga (UFRJ)

Room Topázio

Muscular atrophy: molecular mechanisms and signaling

Chairperson: Marcelo Damário Gomes (USP)/ Rosely Oliveira Godinho (UNIFESP)

- Skeletal muscle atrophy in heart failure: effect of aerobic exercise training Patricia Chackur Brum (USP)
- Sympathetic actions on the skeletal muscle protein metabolism.

Luiz Carlos Navegantes (USP)

 New function of the kallikrein system in the muscular atrophy Lucas Tabajara Parreiras e Silva (USP)

12h10-13h50

Room Topázio

Almoço e Inovação / Lunch and Innovation Chairperson: Regina P. Markus (USP) / Jamil Assreuy (UFSC)

- Inovação e start-ups no setor biofarmacêutico no Brasil: apresentação de um case Rafael Roesler (UFRGS)
- Nos rumos da política de inovação no Brasil. Um exemplo de Santa Catarina João Batista Calixto (UFSC)

14h00-16h00

Room Rubi

José Ribeiro do Valle Award Symposium

Chairperson: Jamil Assreuy (UFSC)

Larissa Staurengo Ferrari

05.009 IL-33 receptor deficiency reduces inflammation in septic arthritis in mice. Staurengo-Ferrari L¹, Cardoso RDR¹, Xu D², Liew FY², Cunha FQ³, Pelayo JS⁴, Saridakis HO⁴, Verri Jr WA¹¹UEL - Ciências Patológicas, ²University of Glasgow - Immunology Infection, Inflammation, ³FMRP-USP, ⁴UEL - Microbiologia, 6UEL - Ciências Patológicas

Amanda Juliana Sales

 03.015 DNA demethylating agents: new antidepressant drugs? Sales AJ¹, Biojone C², Gomes MVM³, Joca SRL¹ ¹FCFRP-USP - Física e Química, ²FMRP-USP - Farmacologia, ³UNOPAR - Genética

Vanessa Olzon Zambelli

 05.028 Peripheral sensitization increases opioid receptor activation and expression in both dorsal root ganglia and nerve paw of rats. Zambelli VO¹, Gutierrez VP¹, Fernandes ACO¹, Parada CA², Cury Y¹¹IBu – Dor e Sinalização, ²UNICAMP – Farmacologia

Eduardo Moreira de Oliveira

02.052 Relationship of long-term memory evocation and cholinergic markers in hippocampus, along the aging process of rats. Oliveira EM¹, Souza LHJ¹, Schowe NM¹, Albuquerque MS¹, Baraldi T¹, Chambergo FS¹, Pina dos Santos VP², Araújo MS², Buck HS³, Viel TA¹ ¹EACH-USP, ²UNIFESP - Bioquímica, ³FCMSCSP - Ciências Fisiológicas

Narayana Fazolini P. Bastos

• 10.014 Leptin activates the mTOR pathway in epithelial cells: roles in lipid metabolism, inflammatory mediator production and cell proliferation. Bastos NFP1, Viola JPB2, Maya-Monteiro CM1, Bozza PT1. 1IOC-FIOCRUZ -Imunofarmacologia, ²INCa - Cellular Biology

16h00-16h20 Coffee-break

16h20-17h50 **Symposia**

Room Rubi

Calcium Signaling

Chairperson: Lusiane M. Bendhack (USP)

- Excitation-secretion coupling in Leydig cells Wamberto A. Varanda (USP)
- Nucleoplasmic calcium regulates cell through legumain

Maria de Fátima Leite (UFMG)

• Physiological and pathological aspects of brain mitochondrial Ca²⁺ transport Roger Frigério Castilho (UNICAMP)

Room Ametista

Cell Signaling in Parkinson's disease: from bench to bedside

Chairperson: Rui D. S. Prediger (UFSC)

• Dopamine turnover following administration of 7-nitroindazole to rats with L-DOPA-induced duskinesia

Elaine A. Del Bel (USP)

- Brain in movement: the role of physical exercise in Parkinson's disease. Aderbal S. Aguiar-Jr. (UFSC)
- Behavioral and neurochemical alterations induced by intranasal administration of MPTP, an experimental model of Parkinson's disease, in mice with genetic deletion of the heparin growth factors Pleiotrophin and binding Midkine

Rita Raisman-Vozari (Université Pierre et Marie Curie, França)

Room Topázio

Nociceptor models for investigation of toxins from animals and plants

Chairperson: Paulo de Assis Melo (UFRJ) / Marília Zaluar P. Guimarães (UFRJ)

- Molecular approaches to the study of natural products modulating nociception Marília Zaluar P. Guimarães (UFRJ)
- Cell and tissue responses to melittin and its antagonist Camila El-Kik (UFRJ)
- Evaluation of nociception in a model of angioneurotic edema in mice Etyene Castro Dip (UFF)

18h00-20h00

Room Esmeralda

Posters Session 2

- 01. Cellular and Molecular Pharmacology 01.014 to 01.027
- 02. Neuropharmacology 02.023 to 02.044
- 03. Psychopharmacology 03.013 to 03.024
- 04. Inflammation 04.047 to 04.092
- 05. Pain and Nociception 05.027 to 05.052
- 06. Cardiovascular and Renal Pharmacology 06.027 to 06.052
- 09. Natural Products and Toxinology 09.036 to 09.070
- 11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology 11.012 to 11.022

21 October 2010 (Thursday)

08h00-09h00

Courses

Room Ametista

Pharmacological modulation of memory during aging and neurodegenerative diseases

Chairperson: Hudson de Sousa Buck (FCMSCSP)

• 3rd Class: Pharmacological modulation of process in neurodegenerative memory diseases.

Marielza Andrade Nunes (FCMSCSP)

Room Topázio

Writing a Scientific Paper: Theory and Practice Chairperson: Y. S. Bakhle (Imperial College, UK)

• 3rd Class: Practical Session 2 Y. S. Bakhle (Imperial College, UK)

Room Rubi

Quantitative and qualitative analysis of drugreceptor interactions

Chairperson: André Sampaio Pupo (UNESP-Botucatu)

• 3rd Class: Functional analysis of doseresponse curves

Ana Maria de Oliveira (USP)

Room Turquesa

Biology of kinase proteins: exemplification with the immune system

Chairperson: Daniel Santos Mansur (UFMG)

Class: NFkB and IRF3/7 signaling pathway in the innate immunity Daniel Santos Mansur (UFMG)

09h10-10h10 Conferences

Room Rubi

The stressed CNS: when glucocorticoids aggravate inflammation.

Javier R. Caso (Stanford University, USA)

Presenter: Carolina Demarchi Munhoz de Souza (USP)

Room Topázio

Genetic modeling of PI3K inhibition Emilio Hirsch (University of Turin, Italy) Presenter: Fernando de Queiroz Cunha (USP)

10h10-12h10

Room Esmeralda

Poster Session 3 & Coffee-break

- 01. Cellular and Molecular Pharmacology 01.028 to 01.040
- 02. Neuropharmacology 02.045 to 02.057
- 03. Psychopharmacology 03.025 to 03.036
- 04. Inflammation 04.093 to 04.138
- 05. Pain and Nociception 05.053 to 05.079
- 06. Cardiovascular and Renal Pharmacology 06.053 to 06.089
- 07. Endocrine and Gastrointestinal Pharmacology 07.001 to 07.013
- 08. Respiratory, Urinary and Reproductive 08.001 to 08.009
- 09. Natural Products and Toxinology 09.071 to 09.107
- 10. Cancer and Cell Proliferation 10.001 to 10.018
- 11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology

11.023 to 11.034

12h10-13h10 Conferences

Room Topázio

Chemokines and their receptors: the nexus of neurobiology and immunobiology Richard Ransohoff (Cleveland Clinic, USA)

Presenter: Mauro M. Teixeira (UFMG)

13h20-13h40 President's Remarks

13h30 Closing Session Awarding Session

01. Cellular and Molecular Pharmacology

01.001

Pharmacologic evaluation of new alpha-1 adrenoceptor antagonists: structural characteristics of the derivatives phenylpiperazinics that affect the affinity for adrenoceptors. Nascimento alpha-1 Romeiro LAS², Nascente LC³, Lemes LFN³, Noel F1, Silva CLM1 1UFRJ - Farmacologia Básica e _ ²FCS-UnB Desenvolvimento Estratégias Terapêuticas, ³UCB-LADETER

01.002

Decreased bone resorption by low $\beta 2$ -adrenergic antagonist. Rodrigues WF¹, da-Silva-Filho VJ¹, Campos-Júnior JC¹, Dias da Silva VJ², Barbosa Neto O², Lopes AHP¹, Napimoga MH³ ¹UNIUBE – Biopatologia e Biologia Molecular, ²UMTM-Fisiologia, ³UNIUBE – Biologia Celular e Molecular

01.003

The lidocaine analogue JMF2-1 prevents allergen-induced lung inflammation without causing immunosupression. Olsen PC¹, Ferreira TPT¹, Serra MF¹, Costa JCS², Cordeiro RSB¹, Silva PMR¹, Martins MA¹ ¹IOC-FIOCRUZ – Inflammation, ²FIOCRUZ – Farmanguinhos

01.004

Pharmacologic evaluation of new alpha adrenoceptor antagonists. Chagas-Silva F¹, Nascimento JB¹, Vieira RO², Romeiro LAS³, Barberato LC⁴, Noel F⁵, Silva CLM⁵ ¹ICB-UFRJ, ²UFRJ - Farmacologia Celular e Molecular, ³UCB - Química Bioorgânica e Medicinal, ⁴UCB - Desenvolvimento de Estratégias Terapêuticas, ⁵UFRJ - Farmacologia Básica e Clínica

01.005

Morphological study of protective effect of glutamine and alanil-glutamine injury induced by TxA from *Clostridium difficile* in rat intestinal epithelial cells. Santos AAQA¹, Leite LL², Brito GAC³, Oliveira MR⁴, Ribeiro RA⁴, Braga Neto MB⁴, Barreto LRF⁴ ¹UFC – Ciências Médicas, ²UFC – Medicina, ³UFC – Morfologia, ⁴UFC – Fisiologia e Farmacologia

01.006

Effect of annexin-1 derived peptide AC 2-26 on mice pulmonary fibroblasts. Trentin PG¹, Ferreira TPT¹, Pires ALA¹, Ciambarella BT¹, Flower RJ², Perretti M², Martins MA¹, Silva PMR¹¹FIOCRUZ – Inflamação, ²William Harvey Institute – Biochemical Pharmacology

01.007

Investigation of the binding of trypanosomal FKBP12 to the ryanodine receptor-3 of rat vas deferens: possible implications in heart failure due to Chagas disease. Perissé L¹, Muzi-Filho H²,

Aido-Machado R¹, Cunha VMN², Salmon DJJ¹¹UFRJ – Bioquímica Médica, ²ICB-UFRJ – Farmacologia Celular e Molecular

01.008

Maternal protein deprivation during lactation increases leptin secretion and inhibits apoptosis of thymic cells from young offspring. Salama Rodrigues C^1 , Renovato-Martins M^2 , Vargas da Silva S^1 , Barja Fidalgo TC^1 1UERJ – Farmacologia, 2UERJ – Farmacologia e Psicobiologia

01.009

LASSBio-1135: a multi-target antinociceptive imidazopyridinic derivative that is a TRPV1 antagonist. Silva RM¹, Guimarães MZP¹, Lima CKF², Lacerda RB², Barreiro EJ², Fraga CAM², Miranda ALP² ¹UFRJ – Farmacologia Básica e Clínica, ²FF-UFRJ – Fármacos – LASSBio

01.010

Effect of a new compound, thiophenacetamide, against *Mycobacterium bovis* (BCG) infection. Vergara FMF¹, Candea ALP¹, Rosas EC¹, de Souza MVN², Henriques MGMO¹ ¹FarManguinhos-FIOCRUZ – Farmacologia Aplicada, ²FarManguinhos-FIOCRUZ – Síntese Orgânica

01.011

Anti-inflammatory and antimicrobial activity of pyrazinamide analogs. Mendonça MSA¹, Candea ALP¹, Lima CHS², de Souza MVN², Henriques MGMO² ¹FIOCRUZ – Farmacologia Aplicada, ²FarManguinhos-FIOCRUZ – Síntese Orgânica

01.012

O-glcnacylation contributes to the vascular effects of ET-1 via activation of the RHOA/RHO-kinase pathway. Lima VV^1 , Giachini FR^1 , Carneiro FS^1 , Webb RC^2 , Tostes RCA^1 1USP – Farmacologia, 2Medical College of Georgia – Physiology

01.013

Intravascular danger signals guide neutrophils to sites of sterile inflammation. Menezes GB¹, Braedon B², Pittman K², Teixeira MM³, Kubes P² ¹UFMG – Morfologia, ²University of Calgary – Immunology, ³UFMG – Bioquímica e Imunologia

02. Neuropharmacology

02.001

Role of iNOS in the anxiogenic effect induced by withdrawal from chronic ethanol consumption. Padovan D¹, Silva K¹, Tirapelli CR², Padovan CM¹¹FFCLRP-USP – Psicologia e Educação, ²EERP-USP – Farmacologia

02.002

Role of P2X receptors, glia and gap junction in the modulation of glutamatergic transmission in NTS neurons projecting to RVLM. Accorsi-Mendonça D, Bonagamba LGH, Leão RX, Machado BH FMRP-USP – Physiology

02.003

Mechanisms involved in the mediation of pressor effects of L-proline injected in the third ventricle of unanesthetized rats. Lopes-Silva S, Scopinho AA, Corrêa FMA USP – Farmacologia

02.004

Central nitric oxide synthase inhibition after 3-amino-1,2,4-triazole into the fourth cerebral ventricle influences parasympathetic response to increase in arterial pressure in spontaneously hypertensive rats. Abreu LC¹, Valenti VE², Ferreira C² ¹FMABC – Morfologia e Fisiologia, ²UNIFESP – Cardiologia

02.005

Physical exercise reduces motor alterations associated to dopamine receptors imbalance in neurointoxicant models of Parkinson's disease. Aguiar-Jr AS¹, Boemer G¹, Rial D¹, Matheus FC¹, Moreira ELG¹, Da Cunha C², Prediger RD¹ ¹UFSC – Farmacologia, ²UFPR – Farmacologia

02.006

 B_1 and B_2 kinin receptors antagonists modulate the bladder overactivity induced by spinal cord injury in rats. Forner S, Andrade EL, Martini AC, Bento AF, Medeiros R, Koepp J, Calixto JB UFSC – Farmacologia

02.007

Involvement of muscarinic receptors of subtype M2 in the cardiovascular responses of acetylcholine microinjected into lateral periaqueductal gray area of unanesthetized rats. Deolindo MV, Corrêa FMA FMRP-USP Farmacologia

02.008

Intra-bed nucleus of the stria terminalis cannabidiol administration alters cardiovascular changes to acute restraint stress through 5-HT1A receptors. Gomes FV, Crestani CC, Alves FHF, Guimarães FS, Corrêa FMA, Resstel LBM FMRP-USP – Farmacologia

02.009

Effect of LASSBio-767 on apoptosis and inhibitory synaptic transmission in neurons. Vieira KST¹, Fraga CAM², Barreiro EJ², Bolzani V³, Castro NG¹ ¹ICB-UFRJ – Farmacologia Molecular, ²FF-UFRJ – LASSBio, ³NUBBe-UNESP-Araraquara – Química Orgânica

02.010

High and low rearing rats selected in the open field differ in the binding of [³H]RO 15-4513 to the limbic cortex. Alves R, Carvalho JGB, Venditti, MAC UNIFESP – Psicobiologia

02.011

LASSBio-579 prevents hyperlocomotion induced by ketamine A behavior suggestive of atypical antipsychotic activity. Antonio CB¹, Betti AH¹, Neves G¹, Hasse DR², Barreiro EJ³, Fraga CAM³, Rates SMK¹ ¹UFRGS – Ciências Farmacêuticas, ²FF-UFRGS – Psicofarmacologia Experimental, ³FF-UFRJ – LASSBio

02.012

Medial prefrontal cortex CB1 receptors are involved with modulation of the baroreflex in rats. Ferreira Junior NC, Alves FHF, Fedoce AG, Corrêa FMA, Resstel LBM FMRP-USP – Farmacologia

02.013

Putative role of Bradykinin (BK) in cognitive deficits in rats. Dong KE¹, Amaral FA¹, Lemos MTR¹, Caetano AL¹, Buck HS¹, Viel TA² ¹FCMSCSP – Ciências Fisiológicas, ²EACH-USP

02.014

Inhibitory influence of lateral hypothalamus neurotransmission in the cardiac response to fear conditioning to context. Reis DG, Deolindo MV, Guimarães FS, Corrêa FMA, Resstel LBM FMRP-USP

02.015

Evaluation of the effect of a *Hypericum* polyanthemum cyclohexane extract in an animal model of Parkinson disease induced by 6-OHDA. Borsoi M¹, Betti AH², Batassini C³, Silvestrin RB⁴, Lazzaretti C¹, Pranke M⁵, Antonio CB², Salles LA⁵, Rosa HS⁵, von Poser GL⁶, Rates SMK², Souza TM³ ¹ICBS-UFRGS, ²UFRGS – Ciências Farmacêuticas, ³UFRGS – Bioquímica, ⁴ICBS-UFRGS – Neurociências, ⁵UFRGS – Farmácia, ⁶UFRGS – Produção de Matéria-Prima

02.016

Neuropharmacological profile of parawixin 11, purified from the venom of the social spider *Parawixia bistriata* (Araneae, Araneidae), in Wistar rats. Pereira AC¹, Cunha AOS¹, Fachim H¹, Lopes NP², Santos WF¹ ¹FFCLRP-USP – Biology, ²USP – Physics and Chemistry

02.017

Involvement of serotonergic and dopaminergic neurotransmission in effect of semi-purified constituent from guaraná seeds in the elevated T maze. Roncon CM, Almeida CB, Mello JCP, Audi EA UEL – Farmácia e Farmacologia

02.018

Kinin receptors blockade ameliorates the neuro-inflammation and the clinical severity in experimental autoimmune encephalomyelitis: the dominant role of kinin B_1 receptor. Dutra RC¹, Leite DFP¹, Manjavachi MN¹, Bento AF¹, Patricio ES¹, Figueiredo CP¹, Pesquero JB², Calixto JB¹ ¹UFSC – Farmacologia, ²UNIFESP – Biofisica

02.019

Dorsal hippocampus glutamate receptors modulate the expression of contextual fear conditioning. Fabri DRS, Reis DG, Hott SC, Corrêa FMA, Resstel LBM FMRP-USP – Farmacologia

Involvement of β -adrenergic receptors in the bed nucleus of the stria terminalis on the expression of contextual fear conditioning. Hott SC, Gomes FV, Reis DG, Fabri DRS, Corrêa FMA, Resstel LBM – Farmacologia

02.021

Glutamate and NMDA modulate A2 adrenergic expression in cell cultures of the medulla oblongata of newborn rats. Silva SM¹, Carrettiero DC², Fior-Chadi DR¹¹IB – Fisiologia, ²UFABC – Ciências Naturais e Humanas

02.022

L-arginine into the CA1 hippocampal subfield did not change retention of inhibitory avoidance task in rats. Yoneyama B, Contardi EB, Milani H¹, Oliveira RMMW UEL – Farmácia e Farmacologia

03. Psychopharmacology

03.001

Activation of CB1 receptors reduces marble burying behavior in mice. Casarotto PC¹, Gomes FV¹, Resstel LBM¹, Guimarães FS¹ ¹FMRP-USP – Pharmacology

03.002

iNOS knockout mice show increased expression of contextual fear conditioning: involvement of nNOS. Lisboa SF¹, Gomes FV¹, Cunha TM¹, Cunha FQ¹, Guimarães FS¹, Corrêa FMA¹, Joca SRL², Resstel LBM¹ ¹FMRP-USP, ²FCFRP-USP – Física e Química

03.003

Evaluation of the anxiolitic activity of the imidazolidinic derivative HPA-14. Carvalho FL^1 , Mota VG^1 , Nóbrega FFF^1 , Salgado PRR^1 , Fonsêca DV^1 , Morais $LCSL^1$, Souza SA^2 , Athayde-Filho PF^2 1UFPB – Pharmaceutical Technology, 2UFPB – Chemistry

03.004

Effects of hippocampal iNOS or nNOS inhibition in models of anxiety and depression. Sato VAH¹, Sales AJ², Joca SRL² ¹FMRP-USP – Farmacologia, ²FCFRP-USP – Física e Química

03 005

Intra-hippocampal injection of cannabidiol induces antidepressant-like effect in the rat forced swimming test. Biojone C¹, Silva M¹, Moreira FA², Guimarães FS¹, Joca SRL³ ¹FMRP-USP – Farma-cologia, ²ICB-UFMG – Farmacologia, ³FCFRP-USP – Física e Química

03 006

Systemic inhibition of inducible NO synthase (iNOS) evokes antidepressant-like effects. Montezuma K¹, Biojone C², Guimarães FS², Joca SRL¹ ¹FCFRP-USP - Física e Química, ²FMRP-USP - Farmacologia

03.007

Shock intensity and duration: importance to induce learned helplessness in rats. Donadon MF, Padovan CM FFCLRP-USP - Psicologia e Educação

03.008

Cannabidiol attenuates MCPP-induced increase in marble burying behavior. Nardo M, Casarotto PC, Guimarães FS FMRP-USP

03.009

Withdrawal from methylphenidate increases neural reactivity of dorsal midbrain. Ferreira R, Shimizu-Bassi G, Nobre MJ FFCLRP-USP – Psicologia e Educação

03.010

Truck drivers take indiscriminated use of amphetamines concomitant with toxic substances. Vieira BAC¹, Souza LA², Marques CD², Salomão PAV², Souza CL³ ¹CEUNSP, ²CEUNSP – Farmácia, ³CEUNSP – Nutricão

03 011

Effects of anti-inflammatory and antidepressant strategies on depressive-like behavior in complete Freund's adjuvant (CFA)-treated mice. Maciel IS¹, Silva RBM¹, Calixto JB², Morrone FB³, Campos MM⁴ ¹PUCRS – Farmacologia, ²UFSC – Farmacologia, ³PUCRS – Farmácia, ⁴PUCRS – Cirurgia-Odontologia

03.012

One trial tolerance phenomenon to benzodiazepines: contribution of dorsal hippocampus protein synthesis. Gazarini L, Stern CAJ, Bertoglio LJ UFSC – Farmacologia

04. Inflammation

04.001

Nitroxides regulate protein phosphorylation linked to NOX2 complex activity in neutrophils: prototype of a new anti-inflammatory. Ribeiro ACG¹, Chavasco LS¹, Santos GB¹, Cardoso MHM², Brigagão MRPL¹ ¹UNIFAL – Ciências Exatas, ²UNIFAL – Farmácia

04 002

Periodontitis induces functional alterations in rat aorta. Campi P¹, Ceravolo GS¹, Martins Porto R¹, Maia-Dantas A¹, Yamamoto, M¹, Teixeira SA¹, Carvalho MHC¹, Herrera BS², Costa SKP¹, Spolidório LC³, Muscará MN¹ ¹ICB-USP Farmacologia, ²FO-UNESP – Patologia, ³UNESP – Patologia

04.003

Effect of ovariectomy on LPS-induced acute lung inflammation in female mice. Gimenes-Júnior JA¹, Ligeiro de Oliveira AP², Vitoretti LB¹, Domingos HV¹, Oliveira-Filho RM¹, Vargaftig BB¹, Tavares de Lima W¹ ¹ICB-USP – Pharmacology, ²ICB-USP – Immunology

Initial characterization of toll-like receptor (TLR)4 signaling pathway on pollutant-induced increased neonate mice susceptibility to asthma. Santos KT¹, Florenzano J¹, Peron JPS², Muscará MN¹, Rizzo LV², Costa SKP¹ ¹ICB-USP – Farmacologia, ²ICB-USP – Imunologia

04.005

Platelet activating factor participate in the control of adiposity and inflammatory process in epididymal adipose tissues of mice fed with palatable diet. Menezes Z¹, Oliveira MC¹, Shang, FLT¹ Lima RL², Teixeira MM², Ferreira AVM³, Souza DG¹ ¹UFMG – Microbiologia, ²ICB-UFMG, ³UFMG – Enfermagem e Nutrição

04 006

Anti-inflammatory properties of fullerol in irinotecan-induced intestinal mucositis in mice. Arifa RDN¹, Madeira MFM¹, de Paula TP¹, Ávila TV², Souza DG¹, Menezes Z³, Lima RL⁴ ¹UFMG – Microbiologia, ²UFPR – Farmacologia, ³UFMG – Fisiologia e Farmacologia, ⁴ICB-UFMG

04.007

The role of 5-lipoxigenase in an experimental periodontal disease by *Aggregatibacter actinomycetemcomitans* in a murine model. Madeira MFM¹, Silva TA², Corrêa JD³, Mitre GC¹, Marprates CVB¹, Souza DG¹ ¹UFMG – Microbiologia, ²UFMG – Patologia, Clínica e Cirurgia Odontológicas, ³UFMG – Farmacologia

04.008

Microspheres loading prostanoids as modulators of phagocytosis. Pereira PAT¹, Gelfuso GM¹, Santos DF¹, Nicolete R², Bitencourt CS¹, Faccioli LH¹ ¹FCFRP – Análises Clínicas, Toxicológicas e Bromatólogicas, ²UNICEUMA

04.009

Evidence of adenosine receptors in the inosine anti-inflammatory effects in a murine model of ovalbumin-induced asthma. Lapa FR¹, Ligeiro de Oliveira AP², Golega BA², Tavares de Lima W², Cabrini DA¹, Santos ARS³ ¹UFPR – Farmacologia, ²ICB-USP – Farmacologia, ³UFSC – Ciências Fisiológicas

04 010

Role of inflammatory chemokines and their decoy receptor D6 in modulation of the inflammatory response associated with murine GVHD. Castor MGM¹, Rezende B², Bernardes PTT³, Reis AC³, Teixeira MM², Locati M⁴, Pinho V² ¹UFMG – Fisiologia e Farmacologia, ²ICB-UFMG – Bioquímica e Imunologia / Morfologia, ³ICB-UFMG – Morfologia, ⁴Universitá di Milano

04 011

Exacerbation of dengue disease by the blockage of NADPH-oxidase complex and nitric oxide production. Avila TV¹, Costa VV¹, Fagundes CT¹, Silveira KD², Morcatty TQ¹, Valadão DF¹, Santos AG¹, Prosperi T¹, Souza DG¹, Silva TA¹, Teixeira

MM² Souza DG¹ ¹UFMG – Microbiologia, ²UFMG – Bioquímica e Imunologia

04.012

Change of skeletal muscle caffeine-induced contracture by sepsis. Pachá BP¹, Borges RS¹, Rico, T B², Carmo PL¹, Benjamim CF², Zapata-Sudo G¹, Sudo RT¹ ¹UFRJ – Fármacos, ²UFRJ – Farmacologia Celular e Molecular

04.013

Evaluation of mechanisms of action of fatty acids from vegetables oils on wound healing. Brogliato AR¹, Figueiredo JB², Branco AMC¹, Almendra LR², Martins V¹, Monte-Alto-Costa A³ Benjamim CF⁴ ¹UFRJ – Farmacologia, ²ICB-UFRJ, ³UERJ – Histologia e Embriologia, ⁴UFRJ – Farmacologia Básica e Clínica

04.014

Cooperative DP1- and CRTH2-activated signaling is required to elicit enhanced leukotriene C₄ synthesis induced by prostaglandin D₂ within eosinophils. Mesquita-Santos FP¹, Bakker-Abreu I², Luna-Gomes T², Bozza PT³, Diaz BL², Bandeira-Melo C² ¹UFRJ / FIOCRUZ - Inflamação / Imunofarmacologia, ²IBCCF-UFRJ - Inflamação, ³FIOCRUZ - Imunofarmacologia

04.015

L-arginine up-regulated and protects the skeletal muscle tissue after resistance training for production of collagen, TGF- β and decreased TNF- α . Morais, SRL², Mello, WG², Oliveira SHP¹ – ¹UNESP-Araçatuba – Farmacologia, ²UNESP-Araçatuba – Fisiologia

04.016

Effects of resveratrol on the pruritogenic and inflammatory events evoked by trypsin in mice. Lazarotto LF¹, Pereira PJS², Souto AA³, Campos MM⁴, Morrone FB³ ¹PUCRS – Farmácia, ²PUCRS – Medicina e Ciências da Saúde, ³PUCRS – Biologia Celular e Molecular, ⁴PUCRS – Cirurgia-Odontologia

04.017

Evaluation of selective phosphatidylinositol-3 Kinaseγ inhibitors in the inflammatory, nociceptive and pruritogenic responses induced by different agents in mice. Pereira PJS¹, Lazarotto LF², Leal PC³, Calixto JB⁴, Morrone FB⁵, Campos MM⁶ ¹PUCRS – Medicina e Ciências da Saúde, ²PUCRS – Farmácia, ³QMC-CFM-UFSC, ⁴UFSC – Farmacologia, ⁵PUCRS – Biologia Celular e Molecular, ⁶PUCRS – Cirurgia-Odontologia

04.018

Effect of Annexin-1 derived peptide AC2-26 on allergic lung inflammation in mice. Matheus-Souza D¹, Trentin PG², Arantes ACS², Ferreira TPT², Pires ALA², Flower RJ³, Perretti M³, Martins MA², Silva PMR² ¹FIOCRUZ – Inflamação, ²IOC-FIOCRUZ – Fisiologia e Farmacodinâmica, ³William Harvey Institute – Biochemical Pharmacology

Effects of an anti-TNF-a therapy on *Aggregatibacter actinomycetemcomitans*-induced alveolar bone loss in mice with experimental arthritis. Queiroz Júnior CM¹, Coelho FM², Madeira MFM³, Candico LCM², Sousa LFC², Teixeira MM², Souza DG³, Silva TA⁴¹UFMG – Farmacologia, ²UFMG – Bioquímica e Imunologia, ³UFMG – Microbiologia, ⁴UFMG – Patologia, Clínica e Cirurgia Odontológicas

04.020

Pancreatic injection of phospholipases A_2 causes abdominal hyperalgesia mediated by NK-1 receptors without leading to systemic toxicity in rats. Zanoni CIS¹, Camargo E², Teixeira SA¹, Martins Porto R¹, Santos KT¹, Florenzano J¹, Muscará MN¹, Costa SKP¹ – ¹USP – Farmacologia, ²UFS – Fisiologia

04.021

Amphetamine decreases inflammation and TH2-cytokines production in murine model of asthma. Hamasato EK¹, Ribeiro A¹, Ferraz-de-Paula V¹, Pinheiro ML¹, Ligeiro de Oliveira AP², Palermo-Neto J¹ ¹FMVZ-USP – Patologia, ²ICB-USP – Imunologia

04.022

Intravital imaging by confocal and multiphoton microscopy: a new tool for understanding dengue pathogenesis. Santos AG¹, Costa VV², Menezes GB³, Fagundes CT², Paula AM⁴, Valadão DF¹, Morcatty TQ², Vilela MC⁵, Pinho V², Teixeira MM² Souza DG¹ ¹UFMG − Microbiologia, ²UFMG − Bioquímica e Imunologia, ³UFMG − Patologia Geral, ⁴UFMG − Física, ⁵ICB-UFMG

04.023

Effects of formaldehyde inhalation on allergic lung inflammation: role of female sex hormones. Amemiya RM, Lino dos Santos Franco A, Ligeiro de Oliveira AP, Oliveira-Filho RM, Tavares de Lima W USP – Pharmacology

04 024

Phospholipase A2 group V in leishmaniasis: role in immunity. Zamith-Miranda D¹, Poublan LE¹, Araújo Souza PS², Siqueira EA¹, Viola JPB², Diaz BL³ ¹UFRJ-IBCCF, ²INCa – Biologia Celular, ³IBCCF-UFRJ – Imunobiologia

04.025

Role of 5-Lipoxygenase products in acute respiratory distress syndrome induced by severe sepsis. Monteiro APT¹, Pinheiro CS¹, Benjamim CF², Soledade ES³, Rocco PRM⁴, Canetti C¹¹IBCCF-UFRJ, ²UFRJ – Farmacologia Básica e Clínica, ³UFRJ – Farmacologia, ⁴UFRJ – Investigação Pulmonar

04.026

Rosiglitazone potentiates alveolar bone loss due to ligature-induced periodontitis in rats. Martins Porto R¹, Teixeira SA¹, Maia-Dantas A¹, Herrera BS², Campi P², Costa SKP¹, Nucci G³, Spolidório

LC², Muscará MN¹ ¹ICB-USP – Farmacologia, ²FO-UNESP – Patologia, ³UNICAMP

04.027

Ligature-induced periodontal disease affects salivation and saliva composition in rats. Maia-Dantas A¹, Campi P¹, Martins Porto R¹, Teixeira SA¹, Herrera BS², Costa SKP¹, Spolidório LC², Muscará MN¹ ¹USP – Farmacologia, ²UNESP – Patologia

04.028

Reparixin, via CXCR1/CXCR2, does not reduce fever induced by PGE₂ mediators. Yamashiro LH¹, Soares DM¹, Melo MCC², Teixeira MM³, Souza GEP² ¹USP – Farmacologia, ²FCFRP-USP – Física e Química, ³UFMG

04.029

Essential oil of *Mansoa standleyi* exerts antiinflammatory effect by inhibition of macrophage activity. Santos IVF¹, Magalhães RC¹, Nascimento MVL¹, Zoghbi MGB², Maués LAL¹, Bastos GNT¹, Do Nascimento JLM¹ ¹UFPA – Neuroquímica Molecular e Celular, ²Museu Emilio Goeldi

04.030

Efficacy of H_2S in the management of pruritus and oedema evoked by different mediators in the mouse skin. Rodrigues L^1 , Florenzano J^1 , Ekundi-Valentim E^1 , Teixeira SA^1 , Muscará MN^1 , Costa SKP^1 1USP – Pharmacology

04.031

Anti-inflammatory activity of new isatin derivatives. Zardo RS¹, Figueiredo GSM², Silva BV³, Matheus ME¹, Pinto AC⁴, Fernandes PD¹¹UFRJ – Farmacologia Básica e Clínica, ²ICB-UFRJ – Farmacologia, ³IQ-UFRJ – Química Orgânica, ⁴UFRJ – Química

04.032

Lipopolysaccharide stimulates NFkB and glucocorticoid receptor translocation to the nucleus of A7r5 rat smooth muscle cells. Scheschowitsch K, DalBó S, Assreuy J UFSC – Pharmacology

04.033

Nicotinic receptors modulate IL-12 production by dendritic cell. Pinheiro ML, Ribeiro A, Ferraz-de-Paula V, Quinteiro-Filho WM, Palermo-Neto J FMVZ-USP – Patologia

04.034

The role of suppressor of cytokine signaling 2 (SOCS-2) in an experimental pulmonary disease by pathogenic fungus *Paracoccidioides brasiliensis*. Santos PC¹, Santos DA¹, Machado FS², Souza DG¹ Cisalpino PS¹ ¹UFMG – Microbiologia, ²UFMG – Bioquímica e Imunologia

04.035

Lipoxin A₄ attenuates zymosan-induced arthritis modulating endothelin-1 effects. Conte FP¹, Menezes-de-Lima Jr O¹, Verri Jr WA², Cunha FQ³, Penido C¹, Henriques MGMO¹ ¹FIOCRUZ –

Farmacologia Aplicada, ²UEL – Ciências Patológicas, ³FMRP-USP

04.036

Anti-hypernociceptive and anti-oedematogenic properties of bis selenide in inflammatory models in mice. Jesse CR¹, Wilhelm EA², Bortolatto CF², Nogueira CW² ¹UNIPAMPA – Nutrição, ²UFSM – Química

04.037

Effects of hydroquinone inhalation on functions of tracheal tissue. Shimada ALB¹, Ribeiro ALT¹, Hebeda CB¹, Bolonheis SM¹, Lino dos Santos Franco A², Tavares de Lima W², Farsky S² ¹USP-Análises Clínicas e Toxicológicas, ²USP – Farmacologia

04.038

An exploratory study of H₂S-releasing enzymes in rat synovial tissue. Ekundi-Valentim E, Rodrigues L, Teixeira SA, Munhoz CD, Muscará MN, Costa SKP ICB-USP – Farmacologia

04 039

Effects of endogenous glucocorticoid and TSPO ligands on L-selectin expression in rat lymphocytes. Lima CB¹, Palermo-Neto J², Farsky S¹¹FCF-USP – Experimental Toxicology, ²FMVZ-USP – Neuroimmunomodulation

04.040

Cellular influx and vascular permeability are modulated differentially by formaldehyde exposure in a rat model of allergic lung inflammation. Lino dos Santos Franco A, Amemiya RM, Domingos HV, Ligeiro de Oliveira AP, Breithaupt-Faloppa AC, Oliveira-Filho RM, Tavares de Lima W USP – Pharmacology

04.041

Cannabidiol, a nonpsychotropic plant-derived cannabinoid, decreases inflammation and alters leukocyte distribution in a murine model of acute lung injury. Ribeiro A¹, Ferraz-de-Paula V¹, Pinheiro ML¹, Zager A¹, Hallak JEC², Zuardi AW², Crippa JA², Palermo-Neto J¹¹FMVZ-USP – Patologia, ²FMRP-USP – Neurologia, Psiquiatria e Psicologia Médica

04.042

FPR2/ALX agonist modulates neutrophil migration in mouse air pouch. Sordi R¹, Della Justina AM¹, Menezes de Lima Jr O², Fernandes D³, Assreuy J¹ ¹UFSC – Farmacologia, ²FIOCRUZ – Farmacologia, ³UEPG – Ciências Farmacêuticas

04.043

The role of CXCR2 in mediating neutrophil accumulation in liver microvasculature depends on the nature of the stimulus. Barroso LC^1 , Paula AM^2 , Teixeira MM^1 , Menezes GB^1 1UFMG – Bioquímica e Imunologia, 2UFMG – Física

04.044

Participation of PI3K/AKT pathway in the pathogenesis of dengue virus infection. Valadão

DF¹, Costa VV¹, Santos AG¹, Morcatty TQ², Fagundes CT², Cisalpino D², Silveira KD³, Ávila TV⁴, Sousa LP⁵, Tavares LD⁴, Teixeira MM², Souza DG¹ ¹UFMG – Microbiologia, ²UFMG – Bioquímica e Imunologia, ³UFMG – Fisiologia e Biofisica, ⁴UFMG – Fisiologia e Farmacologia, ⁵UFMG – Patologia Clínica

04.045

Blockade of angiotensin converting enzyme and AT₁ receptor in T cells during malaria infection: mechanisms of t-cell regulation mediated by angiotensin II. Silva-Filho JL¹, Morrot A², Costa MFS³, Souza MC³, Henriques MGMO³, Savino W⁴, Caruso-Neves C¹, Pinheiro AAS¹ ¹IBCCF-UFRJ – Ciências da Saúde, ²FIOCRUZ – Imunologia, ³FIOCRUZ – Tecnologia em Fármacos, ⁴FIOCRUZ – Pesquisa Sobre o Timo

04.046

Immature thymocytes are released into the periphery of *Trypanosoma cruzi* acutely infected mice by a S1P-dependent mechanism. Lepletier A¹, Borja GP², Einicker-Lamas M³, Silva Barbosa SD¹, Perez AR⁴, Terra-Granado E¹, Carvalho CE¹, Melendes A⁵, Savino W⁶, Morrot A¹¹FIOCRUZ – Imunologia, ²UFRJ – Imunologia e Microbiologia, ³IBCCF-UFRJ, ⁴Universidade Nacional de Rosario, ⁵Glasgow University – Biomedical Research, ⁶FIOCRUZ – Pesquisa Sobre o Timo

05. Pain and Nociception

05.001

The involvement of TRPA1 receptors in the induction and maintenance of prostaglandin-induced hyperalgesia. Bonet IJM¹, DallAcqua M², Zampronio AR³, Tambeli CH¹, Parada CA⁴, Fischer L² ¹FOP-UNICAMP – Ciências Fisiológicas, ²UFPR – Fisiologia, ³UFPR – Farmacologia, ⁴UNICAMP – Farmacologia

05.002

Evaluation of the involvement of kinin receptors in the nociceptive behavior of mice submitted to the brachial plexus avulsion. Jorge IP¹, Quintão NLM² ¹CCS-UNIVALI, ²UNIVALI - Ciências Farmacêuticas

05.003

Mechanisms underlying the scratching behavior induced by the activation of proteinase activated receptor-4 (PAR-4) in mice. Patricio ES, Costa R, Figueiredo CP, Motta EM, Calixto JB UFSC – Farmacologia

05.004

Inflammatory muscle hypernociception depends on activation of ERK and NF-kB signaling pathways. Lima FO¹, Verri Jr WA², Ribeiro dos Santos R³, Soares MBP³, Villarreal CF⁴¹UEFS − Biotecnologia, ²UEL − Ciências Patológicas, ³CPqGM-FIOCRUZ-Bahia, ⁴USP − Farmacologia

Contribution of vanilloid receptor to the nociception induced by peripheral injection of spermine in mice. Gewehr CCV¹, Silva, MA da², Trevisan, G², Rossato M², Drewes, CC⁴, Guerra GP², Rubin MA², Ferreira J² ¹UFSM – Fisiologia e Farmacologia, ²UFSM – Química, ³USP – Toxicologia e Análises Toxicológicas

05.006

Cnidaria venom as pharmacological tool for studying the signaling pathways of pain and its control. Ferreira-Junior WA¹, Zaharenko AJ², Fernandes ACO¹, Zambelli VO¹, Gutierrez VP¹, Konno K³, Tytgat⁴, Picolo G¹, Cury Y¹ ¹IBu – Dor e Sinalização, ²IB-USP – Fisiologia, ³Universidade de Toyama – Medicina Natural, 4Universidade Católica de Leuven – Toxicologia

05.007

Reduced hyperalgesia and allodynia in neuropathic pain models by intraperitoneal and oral administration of new pirazol pirrol piridine derivative. Mendes TCF¹, Nascimento-Jr NM², Antunes F³, Barreiro EJ⁴, Fraga CAM⁴, Sudo RT¹, Zapata-Sudo G⁴ ¹UFRJ – Farmacologia e Química Medicinal, ²IQ-UFRJ – Química, ³CCTA-UENF, ⁴UFRJ

05.008

Interaction between cyclooxygenase-2 and heme oxygenase-1 / biliverdin / carbon monoxide pathways in nociception control in mice. Grangeiro NMCG¹, Silva AAR², Chaves HV², Val DR¹, Aguiar JA³, Souza RB¹, Albuquerque RAF³, Bezerra MM¹ ¹FM-UFC-Sobral – Biotechnology, ²UFC-Sobral – Dentistry, ³FM-UFC-Sobral

05.009

IL-33 receptor deficiency reduces inflammation in septic arthritis in mice. Staurengo-Ferrari L¹, Cardoso RDR¹, Xu D², Liew FY², Cunha FQ³, Pelayo JS⁴, Saridakis HO⁴, Verri Jr WA¹ ¹UEL − Ciências Patológicas, ²University of Glasgow − Immunology Infection, Inflammation, ³FMRP-USP, ⁴UEL − Microbiologia, ⁶UEL − Ciências Patológicas

05.010

Antinociception induced by LASSBio-1410 in neuropathic pain model. Leal DM¹, Nascimento-Jr NM², Leal, CM², Mendes TCF³, Fraga CAM⁴, Barreiro EJ⁴, Sudo RT⁵, Zapata-Sudo G³ ¹UFRJ – Farmacologia, ²IQ-UFRJ, ³UFRJ – Farmacologia Básica e Clínica, ⁴FF-UFRJ – LASSBio, ⁵UFRJ

05.011

Analysis of the antinociceptive activity of fractions from *Pterodon polygalaeflorus*. Pinto FA, Vigliano MV, Silva GP, Freitas GM, Gayer CRM, Coelho MGP UERJ – Bioquímica

05.012

Antinociceptive activity of (-)-(2S,6S)-(6-ethyltetrahydropyran-2-yl)-formic acid on acute pain in mice. Marinho BG¹, Miranda, LSM², Meireles,

BA², Vasconcellos, MLAA³, Pereira, VLP², Fernandes PD⁴ ¹UFES – Medicina Veterinária, ²NPPN-UFRJ, ³UFPB – Química, ⁴UFRJ

05.013

(±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one: a novel substance with antinociceptive properties. Marinho BG¹, Miranda, LSM², Costa JS², Delle Monache F³, Leitão SG⁴, Vasconcellos, MLAA⁵, Pereira, VLP², Fernandes PD⁶ ¹UFES – Medicina Veterinária, ²NPPN-UFRJ, ³UIN – Farmacologia, ⁴UFRJ – Farmácia, ⁵UFPB – Química, ⁶ICB-UFRJ – Farmacologia

05.014

 CB_1 and CB_2 cannabinoid receptors are involved in the effect of crotalphine, an opioid-like analgesic peptide. Machado FC^1 , Zambelli VO^1 , Fernandes ACO^1 , Heimann AS^2 , Cury Y^1 , Picolo G^1 1IBu – Dor e Sinalização, 2P roteimax Biotecnologia Ltda. – P&D

05.015

Antinociceptive and anti-inflammatory activities of novel *N*-acylhydrazone derivatives designed as piroxicam analogues. Bispo Junior W¹, Miranda AS², Queiroz AC¹, Cavalcante-Silva LHA¹, Matta CBB¹, Lima LM², Barreiro EJ², Alexandre-Moreira MS¹ ¹UFAL – Farmacologia e Imunidade, ²FF-UFRJ – LASSBio

05.016

Anti-hypernociceptive effect of dichlopromethane and methanolic extracts obtained from *Piper variabile* C. DC. (Piperaceae) in mice. Alves DR¹, Silva S¹, Cechinel Filho V², Cruz SM³, Caceres A³, Alvarez L⁴, Quintão NLM² ¹UNIVALI – Ciências da Saúde, ²NIQFAR-UNIVALI – Ciências Farmacêuticas, ³USAC – CCQQ y Farmacia, ⁴UAEM – Investigaciones Químicas

05.017

Inosine reduces pain-related behavior in mice: involvement of adenosine A_1 and A_{2A} receptor subtypes and protein kinase C pathways. Nascimento FP¹, Macedo Junior SJ², Lopez SMF², Martins DF³, Cerutti M¹, Marcon R¹, Santos ARS² ¹UFSC – Farmacologia, ²UFSC – Ciências Fisiológicas, ³UFSC – Fisiologia

05.018

Mechanisms through which endogenous ATP via P2X3 and P2X2/3 receptors activation contributes to inflammatory nociception induced by formalin on rat's hind paw. Krimon S¹, Parada CA², Oliveira MC³ ¹UNICAMP – Fisiologia e Biofisica, ²UNICAMP – Farmacologia, ³UNICAMP – Ciências Fisiológicas

05.019

Nociceptive responses and thermal hyperalgesia evoked by substance P and CGRP in the rat trigeminal system. Teodoro FC, Tronco Junior MF, Cruz L, Dotto G, Zampronio AR, Chichorro JG UFPR – Farmacologia

Evaluation of potential antinociceptive the benzofuranones. Gonçalves CJ¹, Lenoir AS¹, Padaratz P¹, Cechinel Filho V², Niero R³, De Campos-Buzzi F³ ¹UNIVALI – Ciências da Saúde, ²NIQFAR-UNIVALI – Ciências Farmacêuticas, ³NIQFAR-UNIVALI

05.021

Effect of hemopressin on Fos and Egr-1 expression on an experimental model of neuropathic pain. Maique ET¹, Alves AS², Ferro ES³, Heimann AS⁴, Britto LRG², Dale CS¹¹IEP-HSL – Neuromodulação e Dor Experimental, ²ICB-USP – Fisiologia e Biofisica, ³ICB-USP, ⁴Proteimax Biotecnologia Ltda. – P&D

05.022

Antinociceptive and anti-inflammatory effects of apocynin, an NADPH -oxidase inhibitor. Castor LRG¹, Ximenes VF², Hiruma-Lima CA³ ¹UNESP-Botucatu – Farmacologia, ²FC-UNESP-Bauru, ³UNESP-Botucatu – Fisiologia

05.023

Antinociceptive properties of a new series of indan-hydrazine compounds. Reis RC³, Motta NAV¹, Canal PF¹, Ávila RMD², Miranda ALP³, Veloso MP³, Brito FCF¹ ¹UFF - Fisiologia e Farmacologia, ²UNIFAL - Ciências Farmacêuticas, ³FF-UFRJ - LASSBio

05.024

Sensitivity of cisplatin-induced sustained mechanical hyperalgesia of face and hind paw to inhibition by classical analgesics. Guginski G, Rae GA UFSC – Farmacologia

05.025

Fractalkine expressed in dorsal root ganglion mediates inflammatory pain. Souza GR¹, Cunha TM, Lotufo CMC, Talbot J, Bozzo TA, Cunha FQ, Ferreira SH – FMRP-USP – Farmacologia

05.026

Evaluation of the analgesic effect of bupivacaine-hydroxypropyl- β -cyclodextrin inclusion complex in association to sufentanil, after intrathecal administration in rats. Queiroz VA¹, de Araújo DR², Cereda CMS¹, de Paula E¹ ¹UNICAMP – Bioquímica, ²UFABC – Ciências Naturais e Humanas

06. Cardiovascular and Renal Pharmacology

06.001

Ruthenium red reverts endothelium-dependent relaxations and enhances contractions of arterial rings from pigs, rats and rabbits. Silva JDP¹, Alves Filho FC², Ballejo G³¹NPPM-UFPI, ²UFPI – Pharmacology and Biochemistry, ³FMRP-USP – Pharmacology

06.002

Pharmacological and morphological evidences for the presence of TRPV4 channels in endothelial cells from rat vessels. Alves Filho FC¹, Silva JDP², Salgado MCO¹, Ballejo G¹ ¹FMRP-USP – Pharmacology, ²NPPM-UFPI

06.003

Reactive oxygen species and PGF_{2alfa} receptor activation modulate SNP relaxation in denuded mice aorta. Kangussu L, Côrtes SF, Bonaventura D UFMG – Farmacologia

06.004

Chronic ethanol consumption decreases the relaxation induced by adrenomedullin and increases its expression in the isolated rat aorta. Hipólito UV¹, Tirapelli DP², Jacob Ferreira ALB³, Batalhão ME⁴, Tanus-Santos JE⁵, Carnio EC⁴, Queiroz RHC⁶, Tirapelli CRⁿ ¹EERP-USP − Enfermagem Psiquiátrica e Ciências Humanas, ²FMRP-USP − Cirurgia Anatomia, ³FCM-UNICAMP − Farmacologia, ⁴EERP-USP − Enfermagem Geral e Especializada, ⁵FMRP-USP − Farmacologia, ⁶FCFRP-USP − Toxicologia, ⁷EERP-USP − Farmacologia

06 005

Effect of quercetin on diabetic nephropathy in hypercholesterolemic mice. Gomes IBS¹, Santos, MCLFS², Ricardo KFS³, Meyrelles SS⁴, Vasquez EC⁵¹UFES – Pharmaceutical Sciences, ²UFES – Pathology, ³FAESA, ⁴UFES – Physiological Sciences, ⁵UFES-EMESCAM – Physiological Sciences

06.006

Characterization of the hypertensive mechanism of ethanolic extract of *L. ericoides*. de Paula DCC¹, Souza ACM¹, Guzzo LS¹, Guimarães HN², Saúde-Guimarães DA¹, Grabe-Guimarães, A¹ ¹DEFAR-UFOP, ²UFMG – Engenharia Elétrica

06.007

Vasodilatatory activity and antihypertensive profile of a new N-acylhydrazone derivative: LASSBio-1027. Leal CM¹, Kummerle AE², Leal DM³, Barreiro EJ², Fraga CAM², Sudo RT⁵, Zapata-Sudo G⁵ ¹UFRJ – Farmacologia Básica e Clínica, ²FF-UFRJ – LASSBio, ³UFRJ – Farmacologia, ⁴UFRJ – LASSBio, UFRJ, ⁵UFRJ

06.008

Analysis of the mechanisms underlying the vasorelaxant action of THE Kaurane acid 16-metoxicauran-19-oic in the isolated rat aorta. Palazzin NB¹, Bonaventura D², Ambrósio SR³, Hipólito UV⁴, Tirapelli CR⁵ – ¹EPCH-EERP-USP, ²UFMG, ³UNIFRAN – Bioprospecção e Biotransformação, ⁴FMRP-USP – Farmacologia, ⁵EERP-USP – Farmacologia

06.009

Effects of chronic ethanol consumption on the reactivity and adrenomedullin mRNA levels of components of this system in the rat mesenteric bed. ¹Rocha JT, ³Hipólito UV, ²Tirapelli DP, ²Jacob-Ferreira AL, ¹Batalhão ME, ²Tanus-Santos JE, ¹Carnio EC, ¹Tirapelli CR, ¹EERP-USP, ²FMRP-USP, ³EERP-USP / FMRP-USP

Characterization of L-arginine-NO-cGMP pathway in spontaneously hypertensive rat platelets: the effects of pregnancy. Ognibene DT, Bello PHP, Moss MB, Soares de Moura R, Brunini T, Mendes Ribeiro AC, Resende AC UERJ – Farmacologia e Psicobiologia

06.011

Effects of intermittent hypoxia on biochemical parameters of rats fed with different diets. Simões RR¹, Dutra AL¹, França RT², Lopes STA², Portela LOC³, Zanchet EM¹ ¹UFSM – Fisiologia e Farmacologia, ²UFSM – Clínica de Pequenos Animais, ³UFSM – Educação Física e Desportos

06.012

Effects of intermittent hypoxia on oxidative parameters of rats fed with different diets. Simões RR¹, Dutra AL¹, Finamor IA¹, Pavanato MA¹, Portela LOC², Zanchet EM¹ ¹UFSM – Fisiologia e Farmacologia, ²UFSM – Educação Física e Desportos

06.013

Role of renin-angiotensin system and oxidative status on the maternal cardiovascular regulation in spontaneously hypertensive rats. Bello PHP, Ognibene DT, Carvalho LCRM, Costa CA, Soares de Moura R, Resende AC UERJ – Farmacologia e Psicobiologia

06.014

Molecular mechanisms involved in the dual blockade of the renin angiotensin system (RAS) on the left ventricular remodeling in renal hypertensive rats (2K-1C). Corrêa JWN¹, Callera GE², Yogi A.², He Y², Araújo AV¹, Vercesi JA³, Riul ME⁴, Prado CM⁴, Rossi MA⁴, Touyz RM², Bendhack LM³ ¹FMRP-USP – Farmacologia, ²University of Ottawa – Kidney Research, ³FCFRP-USP – Física e Química, ⁴FMRP-USP – Patologia

06.015

Renovascular hypertension alters the contribution of alternative pathway to ace in the renal vascular response in isolated kidney. Sivieri-Jr DO¹, Pereira HJV², Oliveira EB², Salgado MCO³ ¹UFVJM – Farmácia, ²FMRP-USP – Bioquímica e Imunologia, ³FMRP-USP – Farmacologia

06.016

The disruption of intracellular Ca⁺² homeostasis is associated with a change of heart function in rats chronically malnourished. Silva DB¹, Mendes LVP¹, Nascimento JHM², Einicker-Lamas M², Vieyra A², Cunha VMN¹, Lara Morcillo LS¹ ¹UFRJ – Farmacologia Celular e Molecular, ²IBCCF-UFRJ

06.017

Endothelial oxidative stress induced by diabetes mellitus I increases maximum contraction evoked by angiotensin II in rat carotid artery.

Pernomian L¹, Gomes MS², Oliveira AM² ¹FMRP-USP – Farmacologia, ²FCF-USP – Física e Química

06.018

Hypercholesterolemia and aging: deleterious effects on renal function. Balarini CM¹, Gava AL¹, Pereira TMC¹, Vasquez EC², Meyrelles SS¹ ¹UFES – Ciências Fisiológicas, ²EMESCAM-UFES – Ciências Fisiológicas

06.019

Impact of kidney ischemia-reperfusion on primary active Na⁺ transporters and its modulation by lysophosphatidic acid. Gonsalez SR¹, Verdoorn KS², Beiral HJV², Vieyra A², Einicker-Lamas M², Lara Morcillo LS¹ ¹ICB-UFRJ – Farmacologia Celular e Molecular, ²IBCCF-UFRJ

06.020

Antihypertensive profile of a novel *N*-acylhydrazone derivative (LASSBio-1289) in spontaneously hypertensive rats. Pereira SL¹, Oliveira LGT¹, Kummerle AE², Fraga CAM², Barreiro EJ², Sudo RT¹, Zapata-Sudo G¹ ¹UFRJ – Desenvolvimento de Fármacos, ²FF-UFRJ – LASSBio

06.021

Increased circulating cell-free DNA levels in preeclampsia and gestational hypertension. Amaral LM¹, Palei ACT², Sandrim VC³, Cavalli RC⁴, Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²FCM-UNICAMP – Farmacologia, ³Santa Casa de Belo Horizonte, ⁴FMRP-USP – Ginecologia e Obstetrícia

06.022

Alveolar bone healing process of upper incisor in spontaneously hypertensive rats (SHR) subjected to treatment with β -adrenergic antagonist. a histomorphometric and immunohistochemistry study. Cursino NM¹, Pereira CCS², Garcia LMG³, Micaroni S⁴, Okamoto R², Carvalho AAF⁵, Perri SHV⁶, Luvizuto EL², Antoniali C⁴ ¹FOA-UNESP – Odontologia Infantil e Social, ²FOA-UNESP – Cirurgia e Clínica Integrada, ³FORP-USP – Materiais Dentários e Prótese, ⁴FOA-UNESP – Ciências Básicas, ⁵FOA-UNESP – Patologia e Propedêutica Clínica, <code>6FOA-UNESP</code> – Apoio, Produção e Saúde Animal

06.023

Endothelium contributes to the vascular relaxation induced by C-type natriuretic peptide (CNP) in aortas from renal hypertensive rats. Pernomian L^1 , Bendhack LM^2 ¹FMRP-USP – Pharmacology, ²FCF-USP – Physics and Chemistry

06.024

Cellular mechanisms involved in the venodilation induced by nitric oxide donors. Paulo M, Vercesi JA, Biazzotto JC, Silva RS, Bendhack LM FCF-USP – Physics and Chemistry

Vasorelaxant effects to the essential oil of *Aniba canelilla* in isolated mesenteric artery rings from spontaneously hypertensive rats. Interaminense LFL¹, Ramos-Alves FE¹, Xavier FE¹, Pinto Duarte G¹, Magalhães PJC², da Silva JK⁶, Sousa PJC⁴, Leal-Cardoso JH⁵, Maia JGS³, Lahlou S⁵ ¹UFPE – Fisiologia e Farmacologia, ²UFC – Fisiologia e Farmacologia, ³UFPA – Engenharia Química, ⁴UFPA – Farmácia, ⁵UECE – Ciências Biomédicas

06.026

Maternal diabetes induces endothelial dysfunction in an age-dependent manner in resistance vessels from male offspring rats: identification of possible mechanisms involved. Ramos-Alves FE, Queiroz DB, Pinto Duarte G, Xavier FE UFPE – Fisiologia e Farmacologia

09. Natural Products and Toxinology

09 001

Leukotrienes, but not bradykinin and nitric oxide, are involved in paw edema induced by batroxase, a PI metalloproteinase isolated from *Bothrops atrox* snake venom. de Toni LGB¹, Figueiredo MJ², Sartim MA¹, Franco JJ¹, Cintra ACO¹, Souza GEP³, Sampaio SV¹ ¹FCFRP-USP – Análises Clínicas, Toxicológicas e Bromatológicas, ²FMRP-USP – Farmacologia, ³FCFRP-USP – Física e Química

09.002

Pharmacological characterization of a metalloproteinase from *Bothrops leucurus* snake venom. Gomes MSR¹, Queiroz MR², Mendes MM², Mamede CCN², Vieira SAPB², Gimenes SNC², Oliveira F², Rodrigues VM² ¹UESB – Química e Exatas, ²UFU – Genética e Bioquímica

09.003

Evaluation of the anti-hypernociceptive effect of the essential oil extracted from leaves of *Ugni myricoides* on inflammatory and neuropathic models of pain in mice. Rocha LR¹, Silva GF¹, Antonialli CS¹, Cechinel Filho V², Quintão NLM¹, Cicció, JF³ ¹UNIVALI – Ciências Farmacêuticas, ²NIQFAR-UNIVALI – Ciências Farmacêuticas, ³Universidad de Costa Rica – Productos Naturales

09.004

Antidepressant-like effect of a supercritical carbon dioxide *Valeriana glechomifolia* extract. Müller LG¹, Salles LA¹, Betti AH¹, Stein AC¹, Sakamoto S², Quintas LEM³, Bettero GM³, Figueira R³, Noel F³, Von Poser GL¹, Rates SMK¹¹UFRGS – Ciências Farmacêuticas, ²UFRGS – Farmácia, ³UFRJ – Farmacologia

09.005

Effects of dietary supplementation with a multimixture composed of oat bran, flaxseed, sesame and sunflower seed on renal function of diabetic rats. Damasceno DCF¹, Almeida IP¹,

Sales ALCC², Teixeira JMR¹, Soares LFM¹, Santos Júnior JC¹, Cunha FVM³, Soares MA⁴, Martins MCC¹ ¹UFPI – Biophysics and Physiology, ²UFPI – Nutrition, ³Health, Human Science and Technologies Faculty – Physiotherapy, ⁴UFPI – Biochemistry and Pharmacology

09.006

Dextran sulfate protected isolated rat heart from the cardiotoxic activity of *Bothrops jararacussu* venom. Martins VV, Ricardo HD, Machado MM, Tomaz MA, El-Kik CZ, Cons BL, Melo PA UFRJ – Farmacologia Básica e Clínica

09.007

Angiotensin-converting enzyme inhibition is involved in artemetin induced hypotension in rats. de Souza P¹, Gasparotto Júnior A¹, Crestani S¹, Silva RCMVAFda¹, Stefanello MEA², Marques MCA¹, da Silva-Santos JE³, Kassuya CAL⁴ UFPR – Farmacologia, ²UFPR – Química, ³UFSC – Farmacologia, ⁴UFGD – Ciências da Saúde

09.008

Antinociceptive effect of uliginosin B is mediated by the activation of dopaminergic and opioid systems. Stolz ED¹, Viana AF², Haas JS², Hasse DR², Von Poser GL², Costentin J³, Do Rego JC³, Rates SMK² ¹UFRGS – Neurociências, ²UFRGS – Farmácia, ³Université de Rouen – Neuropsychopharmacologie Expérimentale

09.009

Phytochemical analysis of ethanolic extract from *Terminalia cattapa* L. leaves and its correlation with gastroprotection. Silva LP¹, Angelis CD¹, Rinaldo D², Vilegas W², Hiruma-Lima CA³, Toma W⁴ ¹UNESP-Botucatu – Fisiologia, ²UNESP-Araraquara – Química Orgânica, ³UNESP-Botucatu, ⁴UNISANTA – Farmácia

09.010

Anti-inflammatory effects of aqueous extract *Echinodorus macrophyllus* in mice air pouch model. Silva GP, Pinto FA, Vigliano MV, Leal NRF, Marques PR, Sabino KCC, Coelho MGP UERJ – Bioquímica

09.011

Anxiolytic effect of the hydroalcoholic extract of *Lafoensia pacari* A. ST.-HIL. stem bark in mice. Galdino PM¹, Nascimento MVM¹, Sousa BF¹, de Paula JR², Costa EA² ¹UFG – Ciências Fisiológicas, ²UFG – Farmácia

09.012

Effects of the hydroalcoholic extract of *Euterpe oleracea* Mart (açaí) on oxidative stress and endothelial dysfunction associated with 2-kidney, 1-clip hypertension. Costa CA¹, Oliveira PRB¹, Emiliano da Silva AF¹, Ognibene DT¹, Carvalho LCRM¹, Amaral TAS¹, Cordeiro VSC¹, Valença SS², Soares de Moura R¹, Resende AC¹¹UERJ – Farmacologia e Psicobiologia, ²UFRJ – Farmacologia

Gastroprotective effects of the trichloroethane fraction of *Piper tuberculatum* in rats. Burci LM¹, Pereira IT¹, da Silva LM¹, Baggio CH¹, Facundo VA², Rodrigues RV², Santos ARS³, Marques MCA¹, Werner MFP¹ ¹UFPR – Farmacologia, ²UNIR – Química, ³UFSC – Ciências Fisiológicas

09 014

Analgesic and anti-inflammatory activity of *Anadenanthera macrocarpa* brenan. Silva, KO¹, Duarte JC¹, Souza EP¹, Cruz MP¹, Marques LM¹, Andrade MF¹, Dórea RSDM¹, Meireles VS¹, Yatsuda R¹, Napimoga MH², Clemente-Napimoga JT² ¹UFBA – Saúde, ²UNIUBE – Saúde

09.015

Substances from the leaves of *Derris urucu* inhibit alpha-glucosidase. Pereira AC¹, Arruda MSP², Lemos VS³, Côrtes SF¹ ¹UFMG – Farmacologia, ²UFPA – Química, ³UFMG – Fisiologia e Biofisica

09.016

Effects of an extract obtained from fruits of *Euterpe oleracea* mart. (Açaí) on experimental metabolic syndrome in C57BL/6 mice. Oliveira PRB¹, Costa CA¹, Bem GF², Cordeiro VSC³, Carvalho LCRM⁵, Souza MAV⁵, Lemos Neto M⁵, Soares de Moura R², Resende AC¹¹UERJ – Farmacologia e Psicobiologia, ²UERJ – Farmacologia, ³UERJ

09.017

The antinociceptive effect of triterpene 3beta, 6beta, 16beta-trihydroxylup-20(29)-ene against acute and chronic pain in mice: the involvement of glutamatergic system. Longhi-Balbinot DT¹, Lanznaster D¹, Martins DF¹, Villarinho JG², Ferreira J², Facundo VA³, Santos ARS¹ ¹UFSC – Ciências Fisiológicas, ²UFSM – Química, ³UNIR – Química

09.018

Antiproliferative activity of extracts from leaves of fruit trees. Begnami AF¹, Figueira GM², Pereira B.², Ruiz ALTG², Carvalho JE², Rehder VLG² ¹FOP-UNICAMP, ²CPQBA-UNICAMP

09.019

Gastric antisecretory activity of an ethanolic extract of *Arctium lappa* L. in rats. da Silva LM¹, Pereira IT¹, Mendes DAGB¹, Pizzolatti MG², Werner MFP³, Andre E⁴, Marques MCA¹ ¹UFPR – Farmacologia, ²UFSC – Química, ³UFSC – Farmacologia, ⁴UFRN – Biofisica e Farmacologia

09.020

Gastroprotective and antioxidant effects of ethanolic extract of *Arctium lappa* L. on acetic acid-induced ulcers in rats. da Silva LM.¹, Crestani S¹, Burci LM¹, Pizzolatti MG², Werner MFP¹, Andre E³, Marques MCA¹ ¹UFPR – Farmacologia, ²UFSC – Química, ³UFRN – Biofísica e Farmacologia

09.021

Crotalus durissus terrificus: hepatic effects of snake venom in rats. da Silva JG¹, Soley BS¹, Gris V.¹, Rocio AAP², Cadena SMSC², Eler GJ³, Bracht A³, Dalsenter PR¹, Acco A¹ ¹UFPR – Farmacologia, ²UFPR – Bioquímica e Biologia Molecular, ³UEM – Bioquímica

09.022

Lonomia obliqua venom-induced proinflammatory profile in endothelial cell *in vitro* and increased leukocyte trafficking *in vivo*. Nascimento-Silva V¹, Rodrigues GS¹, Moraes JA¹, Cyrino FZ², Bouskela E², Guimarães JA³, Barja Fidalgo TC¹ ¹UERJ – Farmacologia, ²UERJ – Fisiologia, ³UFRGS – Farmacologia

09.023

Gastroprotective effect of *Terminalia fagifolia* ethanolic extract. Soares GFS, Sousa OT, Souza AES, Oliveira AC, Nunes PHM, Martins MCC UFPI – Biofisica e Fisiologia

09.024

Biological activity of hidroalcoholic fraction of *Herissantia crispa* (L.) Brizicky. Dias GEN, Mota KSL¹, Lima IO¹, Pereira, FO¹, Viana WP¹, Teles YCF¹, Lima EO¹, Diniz MFFM¹, Souza MFV¹, Batista LM¹ DCF-UFPB

09.025

Effect of methanolic extract and fractions from *Davilla elliptica* leaves (Dilleniaceae) on MMPs in *Bothrops jararaca* envenomation and inflammation. Nishijima CM¹, Delella FK², Bruni FM³, Rodrigues CM⁴, Vilegas W⁴, Lopes-Ferreira M⁵, Felisbino S⁶, Hiruma-Lima CA⁻¹UNESP-Botucatu – Fisiologia, ²UNESP-Botucatu – Morfologia, ³IBu – Toxinologia Aplicada, ⁴IQ-UNESP-Araraquara – Química Orgânica, ⁵IBu – Imunopatologia, ⁶UNESP, ७UNESP-Botucatu

09.026

Evaluation of anti-inflammatory activity of butanolic fraction from *Dioscorea scabra* Humb. & Bonpl. ex Willd. Hank A¹, Beduschi MG¹, Darmarco ED², Sousa JMB¹, Magina MDA³, Guimarães CL⁵ ¹FURB – Medicina, ²FURB – Farmácia, ³FURB – Ciências Farmacêuticas

09.027

Antibacterial activity of the *Byrsonima* gardneriana A. Juss. Dias GEN, Leite ATJ, Pereira FO, Rolim TL, Lima EO, Tavares JF, Batista LM DCF-UFPB

09.028

Effect of sub-chronic treatment with psychollatine in the mice light/dark paradigm. Passos CS¹, Both FL¹, Steffen VM¹, Kerber VA², Henriques AT¹ ¹UFRGS – Ciências Farmacêuticas, ²UFPR – Farmácia

09.029

Mechanisms underlying the diuretic effects of isoquercitrin – an active flavonoid of *Tropaeolum majus* L. Gasparotto Júnior A¹, Gasparotto, FM², Leme TSV², Lourenço EL¹, Stefanello MEA³, Silva

Santos, JE⁴, Kassuya CAL⁵, Marques MCA⁶ ¹UNIPAR/UFPR – Farmacologia, ²UNIPAR – Farmacologia, ³UFPR – Química, ⁴UFSC – Farmacologia, ⁵UFGD – Farmacologia, ⁶UFPR – Farmacologia

09.030

Anti-nociceptive and antiedematogenic effect of *Argyrovernonia harleyi* (H. Rob) Macleish hydroalcoholic extract on writhing test. Silva, AAR¹, Val DR², Souza RB², Araújo EB², Ribeiro KA², Brayner MMB³, Chaves HV⁴, Maia MBS⁵ ¹UFC-Sobral – Odontologia, ²UFC-Sobral, ³UFC – Fisiologia e Farmacologia, ⁴UFC, ⁵UFPE – Fisiologia e Farmacologia

09.031

Modulation of T lymphocyte and eosinophil functions in vitro by natural tetranortriterpenoids isolated from Carapa quianensis Aublet. Ferraris FK1, Rodrigues R2, Silva VP², Figueiredo MR², Penido C¹, Henriques ¹Farmanguinhos-FIOCRUZ Farmacologia Aplicada, ²Farmanguinhos-FIOCRUZ - Química de Produtos Naturais

09.032

Evaluation of the antiulcer activity of the extract obtained from rhizomes of *Typha domingesis* Pers (Typhaceae). Molina L¹, Ornelas FGI¹, Toma W¹ ¹UNISANTA – Farmácia

09.033

Comparative study of different portions and extract from *Byrsonima intermedia* (leaves) A. Juss against disturbances gastrointestinal in rodents. dos Santos RC¹, Sannomiya M², Rodrigues CM², Vilegas W², Hiruma-Lima CA¹ ¹IB-UNESP-Botucatu – Fisiologia, ²IQ-UNESP-Araraquara – Química Orgânica

09.034

Croton grewioides Baill. shows antidiarrhoeal activity in mice. Silva ADS¹, Silva, KM¹, Lima LO¹, Silva-Junior V², Silva PCB³, Medeiros VM³, Costa VCO³, Tavares JF³, Silva MS⁴, Cavalcante FA¹¹ICBS-UFAL, ²UFAL – Nutrição, ³LTF-UFPB, ⁴UFPB – Química

09.035

Evaluation of the toxicity and gastroprotective activity of the ethanolic extract from leaves of *Xylopia langsdorffiana* A. St.-Hil. & Tul. (Annonaceae). Montenegro CA, Lima GRM, Pessoa DR, Viana WP, Castello Branco MVS, Tavares JF, Batista LM LTF-DCF-UFPB

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology

11.001

The proper use of self medication and risks and consequences in the health area of universities. Naime ACA, Reis LM, Garcia JAD, Soares EA, Loyola YCS UNIFENAS – Farmácia

11.002

A functional matrix metalloproteinase (MMP)-9 polymorphism modifies plasma MMP-9 levels in subjects environmentally exposed to mercury. Jacob Ferreira ALB¹, Barbosa Jr F², Gerlach RF³, Tanus-Santos JE⁴ ¹FCM-UNICAMP – Farmacologia, ²FCFRP-USP – Toxicologia, ³FORP-USP – Morfologia, ⁴FMRP-USP – Farmacologia

11.003

Endothelial nitric oxide synthase gene haplotypes affect nitrite levels in black subjects. Metzger IF¹, Ishizawa MH¹, Rios-Santos F², Carvalho WA³, Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²UESC – Saúde, ³HSR – Patologia Clínica e Toxicologia

11.004

Interethnic diversity of NAT2 polymorphisms in Brazilian admixed populations. Talbot J¹, Magno LA¹, Santana CVN¹, Souza SMB¹, Melo PRS¹, Corrêa RX¹, Di Pietro G², Rios-Santos F² ¹DCB-UESC, ²DCS-UESC

11.005

Pharmacokinetic evaluation of the anticancer candidate LaSOM 65 in rats. Torres B¹, Uchoa FDT², Canto RFS¹, Crestani A³, Russowsky D⁴, Eifler-Lima VL¹, Dalla Costa T¹ ¹UFRGS − Ciências Farmacêuticas, ²FF-UFRGS − Medicamentos, ³FF-UFRGS − Síntese Orgânica Medicinal, ⁴UFRGS − Química

11.006

Pharmacoepidemiological evaluation of analgesic use for children and adolescents from a public school. Alves DS¹, Lacerda JSJ¹, Matias TC¹, Borlini PG¹, Brito BG¹, Almeida JM¹, Beijamini V² ¹UFES – Ciências da Saúde, ²UFES – Ciências Farmacêuticas

11 007

Imbalanced matrix metalloproteinases levels in women with polycystic ovary. Gomes VA¹, Jacob Ferreira ALB², Belo VA², Vieira, CS³, Fernandes JBF³, Soares GM³, Ferriani R³, Tanus-Santos JE⁴ ¹FCM-UNICAMP, ²FCM-UNICAMP − Farmacologia, ³FMRP-USP − Ginecologia e Obstetrícia, ⁴FMRP-USP − Farmacologia

11.008

Histological changes in different tissues of nonpregnant and pregnant rats and their fetuses treated with statins. Oliveira LP, Ikeda CM, Maciel LIS, Pereira DA, Ferreira TMI, Melo R, Braga-Vilela AS UNIFENAS – Ciências Biomédicas

11 009

Influence of isotretinoin in liver transaminases and triglycerides plasma levels. Vieira AS¹, Beijamini V², Melchiors, AC¹ ¹UFES – Ciências da Saúde, ²UFES – Ciências Farmacêuticas

Matrix metalloproteinase 9 gene polymorphisms affect left ventricular hypertrophy in hypertensive patients. Lacchini R^1 , Jacob Ferreira ALB², Luizon MR¹, Coeli FB³, Izidoro-Toledo TC¹, Gasparini G^4 , Ferreira-Sae MC⁴, Schreiber R⁴, Nadruz Filho W⁵, Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²FCM-UNICAMP – Farmacologia, ³FMRP-USP – Endocrinologia, ⁴FCM-UNICAMP – Patologia, ⁵FCM-UNICAMP – Clínica Médica

11 011

Endothelial nitric oxide synthase (ENOS) haplotypes associated with aura in women with migraine. Gonçalves FM¹, Oliveira AM², Speciali JG³, Izidoro-Toledo TC⁴, Silva PS¹, Dach F³, Tanus-Santos JE⁴ ¹UNICAMP – Farmacologia, ²USP – Farmacologia, ³FMRP – Neurologia, ⁴FMRP-USP – Farmacologia

01. Cellular and Molecular Pharmacology

01.014

Modulation of VEGF effects by a synthetic analogue of 15-epi-lipoxins: involvement of the enzyme heme oxygenase-1. Vieira AM $^{\rm l}$, Barja Fidalgo TC $^{\rm 2}$, Fierro IM $^{\rm 2}$ $^{\rm 1}$ DFP-UERJ, $^{\rm 2}$ UERJ – Farmacologia

01.015

ATL-1, a synthetic analog of 15-epi-lipoxin A4, modulates foam cells activation: a novel potential tool for atherosclerosis treatment. Niconi-de-Almeida Y¹, Simões RL¹, Barja Fidalgo TC², Fierro IM² ¹UERJ – Farmacologia e Psicobiologia, ²UERJ – Farmacologia

01.016

Characterization of the antimuscarinic effect of LASSBio-767 in HT-29 cells. Gambôa NF¹, Pimentel LSB¹, Fraga CAM², Barreiro EJ², Bolzani V³, Castro NG¹ ¹ICB-UFRJ Farmacologia Molecular, ²FF-UFRJ – LASSBio, ³UFRJ – LASSBio, UFRJ, ³NuBBe-UNESP-Araraquara – Química Orgânica

01.017

In vitro characterization of six new 1,4-benzodiazepines compounds. Thibaut JPB¹, Vieira RO¹, Menezes CMS², Barreiro EJ², Lima LM², Noel F¹ ¹UFRJ – Farmacologia Básica e Clínica, ²FF-UFRJ – LASSBio

01.018

Signaling function of Na/K-ATPase in ouabain-induced a decrease in LPS inflammation model in vivo. Kinoshita PF 1 , Yshii LM 1 , Sa Lima L 1 , Davel APC 2 , Rossoni LV 2 , Kawamoto EM 1 , Scavone C 1 ICB-USP – Farmacologia, 2 ICB-USP – Fisiologia e Biofisica

01.019

Protective effects of resveratrol on hepatotoxicity induced by antituberculosis drugs. Nicoletti NF¹, Santos Jr AA², Rodrigues-Junior VS², Campos MM³, Leite CE⁴, Basso LA², Santos DS⁵, Souto AA⁶ ¹INCTTB-PUCRS – Biologia Molecular e Funcional, ²INCTB-PUCRS, ³PUCRS, ⁴PUCRS – Toxicologia, ⁵PUCRS – Farmácia, ⁶PUCRS – Química

01.020

The time-points of *Bothrops lanceolatus* venom molecular effects on rat gastrocnemius. Barbosa-Souza V¹, Contin DK¹, Bonventi W², Lôbo de Araújo A¹, Irazusta SP¹, Cruz-Höfling MA³¹UNICAMP – Farmacologia, ²CEETEPS, ³IB-UNICAMP – Biologia Celular e Estrutural

01.021

An autocrine/paracrine role for relaxin system in testis: Sertoli cell proliferation via activation of ERK1/2 pathway and a possible role in early steps of spermatogenesis. Nascimento AR,

Pimenta MT, Royer C, Lucas TFG, Porto CS, Lazari MFM UNIFESP - Farmacologia

01.022

β-adrenoceptor modulates skeletal muscle contraction by coupling to both Gs and Gi proteins: a new concept to cAMP signaling pathway. Rodrigues FSM, Bergantin LB, Pires-Oliveira M, Andrade-Lopes AL, Godinho RO UNIFESP – Farmacologia

01.023

Role of P2X₇ receptor during *Mycobacterium tuberculosis*-infection in mice. Santos Jr AA¹, Rodrigues-Junior VS², Coutinho R³, Santos DS², Campos MM⁴, Morrone FB¹ ¹PUCRS – Biologia Celular e Molecular, ²INCTTb-PUCRS – Biologia Molecular e Funcional, ³IBCCF-UFRJ, ⁴PUCRS – Odontologia

01.024

Creb response after caloric restriction in a LPS inflammation model in rat hippocampus. Vasconcelos AR, Sá Lima L, Kawamoto EM, Scavone C ICB-USP - Farmacologia

01.025

Ovariectomy does not modulate chronic unpredictable stress (CUS) potentiation of lipopolysaccharide-induced NF-kB activity in striatum of female Wistar rats. Sá Lima L¹, Porto CS², Scavone C¹, Carolina DM¹ ¹ICB-USP – Farmacologia, ²UNIFESP – Farmacologia

01 026

Effect of N¹-acetyl-N-formyl-5-methoxykynuramine (AFMK) on the production nitric oxide by cultured endothelial cells. Freitas AH, Tamura EK, Markus RP IB-USP – Fisiologia

01.027

Reactivity of endothelial cells in culture is conditioned by nocturnal melatonin surge in donor rats. Marçola M, Tamura EK, Fernandes PACM, Markus RP IB-USP – Fisiologia

02. Neuropharmacology

02.023

The selective A-type K⁺ current blocker Tx3-1 rescues memory of mice submitted to a model of Alzheimer´s disease. Gomes GM¹, Dalmolin GD², Ferreira J¹, Gomez MV², Rubin MA¹ ¹UFSM – Química, ²UFMG – Farmacologia

02.024

Ketamine/fentanyl administration in infant rats induces anxiolysis until adult life. Medeiros LF¹, Souza A¹, Rozisky JR¹, Santos VS¹, Netto CA², Battastini AMO², Torres ILS¹ ¹UFRGS – Farmacologia, ²UFRGS – Bioquímica

02.025

Kinin B2 receptor can play a neuroprotective role in Alzheimer's disease. Caetano AL¹, Amaral FA¹,

Dong KE¹, Baraldi T², Viel TA², Buck HS¹ ¹FCMSCSP – Ciências Fisiológicas, ²EACH-USP

02.026

Medial prefrontal cortex muscarinic receptors modulate the expression of contextual fear conditioning. Fedoce AG, Ferreira Junior NC, Reis DG, Corrêa FMA, Resstel LBM FMRP-USP – Farmacologia

02.027

Morphological changes in rat skeletal muscle during atrophy caused by amyotrophic lateral sclerosis. Figueiredo LB, Barnabe GF, Mello LE, Godinho RO UNIFESP – Farmacologia, ²UNIFESP – Fisiologia

02.028

"Anxious" and "non-anxious" subgroups of rats selected in the elevated plus maze do not differ in the density of [3H]-flunitrazepam binding in the hippocampus and limbic cortex. Carvalho JGB, Venditti MAC UNIFESP – Psicobiologia

02 029

Binding of [3H]-flunitrazepam and [3H]-MK-801 in brain regions of rats with different sensitivity to the convulsant effect of a benzodiazepine inverse agonist. Conto MB¹, Carvalho JGB, Venditti MAC UNIFESP – Psicobiologia

02.030

The paraventricular nucleus of the hypothalamus mediates pressor response to acute restraint stress in rats. Busnardo C¹, Tavares RF¹, Resstel LBM¹, Elias LLK², Corrêa FMA¹¹FMRP-USP – Pharmacology, ²FMRP-USP – Physiology

02.031

Pre-synaptic nicotinic cholinergic receptor increases neurotransmitter release in cultured cells from the medulla oblongata. Matsumoto JPP, Martins EAC, Fior-Chadi DR IB-USP – Physiology

02.032

Facilitation of endocannabinoid-mediated neurotransmission in the dorsal hippocampus induces anxiolytic effects in rats submitted to the Vogel conflict test. Nejo P, Lisboa SF, Resstel LBM, Guimarães FS FMRP-USP

02.033

Possible role of the angiotensin (1-7) in the hippocampus in a model of epilepsy. Pereira MGAG¹, Souza LL¹, Becari C², Camacho F¹, Oliveira JAC³, Salgado MCO², Garcia-Cairasco N³, Costa-Neto CM¹ ¹FMRP-USP – Biochemistry and Immunology, ²FMRP-USP – Pharmacology, ³FMRP-USP – Physiology

02.034

Enriched environment stimulus improves spatial and aversive-related memory performance in an animal model of severe Alzheimer's disease. Schowe NM¹, Oliveira EM¹, Souza LHJ¹, Sousa AMA², Amaral FA², Lopes ASA², Caetano AL²,

Rocha MN³, Buck HS², Viel TA¹ ¹EACH-USP, ²FCMSCSP – Ciências Fisiológicas, ³FCMSCSP – Medicina Molecular

02.035

Acute but not chronic administration of pioglitazone promoted behavioral and neurochemical protective effects in the MPTP model of Parkinson's disease. Barbiero JK, Santiago RM, Lima MMS, Ariza D, Morais LH, Andreatini R, Vital MABF UFPR – Farmacologia

02.036

The noradrenergic neurotransmission in the MeA modulates the cardiovascular responses to acute restraint stress in rats. Fortaleza EAT, Scopinho AA, Corrêa FMA FMRP-USP

02.037

Inhibition of spinal c-Jun-N-terminal kinase (JNK) after spinal cord injury improves locomotor performance. Martini AC¹, Forner S¹, Koepp J², Rae GA¹ ¹UFSC – Pharmacology, ²UFSC – Chemical and Food Engineering

02.038

Medial prefrontal cortex NMDA-Nitric oxide pathway modulates anxiety-behavior in rats submitted to the Vogel conflict test. Resstel LBM, Lisboa SF, Guimarães FS FMRP-USP

02.039

Aged and young rats respond differently to permanent, 3-stage 4-vessel occlusion: An analysis of learning, neurodegeneration and β -APP expression. Ferreira EDF¹, Romanini CV², Albertin M¹, Mori MA³, Oliveira RMW¹, Milani H¹ ¹UEM – Farmácia e Farmacologia, ²UEL – Farmácia e Farmacologia, ³UEM – Ciências Biológicas

02.040

Alpha2-adrenoceptors in the lateral septal area modulates cardiovascular responses evoked by restraint stress in rats. Scopinho AA, Reis DG, Resstel LBM, Corrêa FMA FMRP-USP

02.041

Involvement of glutamate AMPA receptors in the hypothalamic mechanisms triggered by paracetamol on the supression of LPS-induced fever. Campos EMB¹, Moraes TP¹, Kanashiro A², Malvar DC³, Souza GEP² Iyomasa MM¹, Rosa ML¹¹FAMECA-FIPA – Neurociências, ²FCF-USP – Física e Química, ³UFRRJ – Ciências Fisiológicas

02.042

Comparison of cognitive stimulation during lifetime and during the elderly: effects on spatial memory and on neuroplasticity of mice. Baraldi T¹, Amaral FA², Caetano AL², Albuquerque MS¹, Buck HS¹, Viel TA¹ ¹EACH-USP, ²FCMSCSP – Ciências Fisiológicas

02.043

Characterization of glycinamide as a co-agonist of NMDA receptors. Montenegro VM¹, Setti-

Perdigão P, Guimarães MZP, Castro NG ICB-UFRJ - Farmacologia Molecular

02.044

The expression of mRNA encoding flip and flop isoforms of GLUR1 is increased in hippocampus of isolated young adult rats. Pereira MTR¹, Tonso VM², Limonte FH², Oliveira FS³, Iyomasa MM¹, Rosa ML¹ ¹FAMECA-FIPA – Neurociências, ²FAMECA-FIPA – Bioquímica, ³USP – Farmacologia

03. Psychopharmacology

03.013

Effect of transient reversible inactivation of the ventral hippocampus in rats submitted to the forced swimming test. Diniz CRAF, Casarotto PC, Joca SRL FCFRP-USP – Física e Química

03.014

Involvement of local insular cortex neurotransmission on contextual fear conditioning. Alves FHF^1 , Reis DG^2 , Crestani CC^2 , Corrêa FMA^3 , Resstel LBM^3 1FMRP -USP – Farmacologia

03.015

DNA demethylating agents: new antidepressant drugs? Sales AJ¹, Biojone C², Gomes MVM³, Joca SRL¹ ¹FCFRP-USP – Física e Química, ²FMRP-USP – Farmacologia, ³UNOPAR – Genética

03.016

New *N*-phenylpiperazine derivatives with antipsychotic-like activity in rodents bind to α_{1a} and α_{1b} receptors. Betti AH¹, Antonio CB¹, HASSE DR², Vieira RO³, Martins TS⁴, Barreiro EJ⁴, Fraga CAM⁴, Noel F⁵, Rates SMK¹ ¹UFRGS – Ciências Farmacêuticas, ²UFRGS – Psicofarmacologia Experimental, ³UFRJ – Farmacologia Celular e Molecular, ⁴FF-UFRJ – LASSBio, ⁵UFRJ – Farmacologia Básica e Clínica

03.017

Acute MDMA (Ecstasy) treatment induces a persistent leukocyte distribution change and enhances susceptibility to infection. Ferraz-de-Paula V¹, Ribeiro A¹, Souza-Queiroz J², Torello CO³, Queiroz MLS⁴, Moreau RLM⁵, Palermo-Neto J⁶ ¹FMVZ-USP – Patologia, ²IP-USP, ³UNICAMP – Farmacologia, ⁴UNICAMP – Farmacologia / Hemocentro, ⁵FCF-USP – Análises Clínicas e Toxicológicas, ⁶FMZV-USP – Neuroimuno-modulation

03.018

Evaluation of the antinociceptive effect of ethanolic extract of *Sida galheirensis* (Malvaceae). Salgado PRR, Fonsêca DV, Carvalho FL, Torres PA, Lima MRV, Morais LCSL, Almeida RN, Souza MFV UFPB – Pharmaceutical Technology

03.019

Evaluation of central activity of essential oil *Lippia microphylla* (Verbenaceae) in mice. Monte LO, Mota VG, Pinheiro LS, Timóteo RNPD, Tavares JF, Morais LCSL, Alencar JL, Almeida RN UFPB – Pharmaceutical Technology

03.020

Restraint stress changes temporal patterns of adenine nucleotides hydrolysis in rat's blood serum. Souza A¹, Detanico BC¹, Rozisky JR¹, Medeiros LF², Caumo W², Hidalgo MP³, Battastini AMO⁴, Torres ILS² ¹UFRGS – Farmacologia, ²UFRGS – Anestesia, ³UFRGS – Psiquiatria, ⁴UFRGS – Bioquímica

03.021

Behavioral syndromes in experimental autoimmune encephalomyelitis. Rodrigues DH¹, Sousa LFC¹, Miranda AS¹, Lacerda-Queiroz N¹, Vilela MC¹, Campos RDL, Teixeira MM¹, Reis HJ², Teixeira AL¹ ¹UFMG – Imunofarmacologia, ²UFMG – Neurofarmacologia

03.022

Chronic administration of medroxyprogesterone or clomifene, anti-estrogenic drugs, does not reproduce the antimanic-like effect of tamoxifen in an animal model of mania. Pereira M¹, Siba IP¹, Martynhak BJ¹, Correia D¹, Baretta IP², Andreatini R¹ ¹UFPR – Pharmacology, ²UNIPar

03.023

Anxiolytic-like effect of benzodiazepine flurazepam is oestrous cycle-dependent. Silva Medeiros AG, Muniz GD, Figueiredo Neto JL, Arruda Junior WB, Costa RD, Carvalho MS, de Paula Soares V UFRN –. Biofisica e Farmacologia

03.024

Role of median raphe nucleus 5-HT1a receptors on behavioral despair. Trovo MC, Almeida PVG, Pereira DHS, Padovan CM FFCLRP-USP – Psicologia e Educação

04. Inflammation

04.047

Effect of repeated treatment with enalapril on the hepatotoxicity induced by acetaminophen in mice. Betto MRB¹, Lazarotto LF², Leite CE³, Watanabe TTN⁴, Driemeier D⁵, Campos MM⁶¹PUCRS – Biologia Celular e Molecular, ²PUCRS – Farmácia, ³PUCRS – Toxicologia, ⁴UFRGS – Patologia e Clínica Veterinária, ⁵UFRGS – Veterinária, ⁶PUCRS – Cirurgia-Odontologia

04.048

A pharmacological approach to food allergy in mice: novel therapeutic targets. Pereira-Silva PEM, Amaral SS, Noviello MLM, Menezes GB, Cara DC ICB-UFMG – Morfologia

04.049

Quercetin inhibits neutrophil recruitment *in vivo* and *in vitro*: inhibition of actin polymerization. Zarpelon AC¹, Souto FO², Staurengo-Ferrari L¹,

Fattori V¹, Casagrande R¹, Fonseca MJ³, Cunha TM², Ferreira SH², Cunha FQ², Verri Jr WA¹ ¹UEL – Ciências Patológicas, ²FMRP-USP – Farmacologia, ³FCFRP-USP – Ciências Farmacêuticas

04.050

Effects of mangiferin on allergic inflammation induced by ovalbumin in A/J mice. Coelho LP, Jurgilas PB, Serra MF, Pires ALA, Cruz CCD, Cordeiro RSB, Silva PMR, Martins MA IOC-FIOCRUZ – Fisiologia e Farmacodinâmica

04.051

Inhibition heme oxygenase increases neutrophil migration to the bronchoalveolar spaces and attenuates pulmonary mechanics changes during severe sepsis induced by pneumonia. Czaikoski PG¹, Nascimento DCB², Spiller F¹, Rocco PRM³, Cunha FQ¹ ¹FMRP-USP – Pharmacology, ²FMRP-USP – Immunology, ³UFRJ Investigação Pulmonar

04 052

Effect of thoracic lymphatic duct ligation on the release of lung inflammatory mediators in the model of gut trauma in rats. Breithaupt-Faloppa AC, Vitoretti LB, de Assis Ramos MM, Cavriani G, Sudo-Hayashi LS, Oliveira-Filho RM, Vargaftig BB, Tavares de Lima W ICB-USP – Farmacologia

04.053

Eosinophils as novel cell source of prostaglandin D₂: autocrine activity and allergy-driven synthesis. Luna-Gomes T¹, Magalhães KG², Mesquita-Santos FP², Bakker-Abreu I¹, Samico RF¹, Bozza PT², Diaz BL¹, Bandeira-Melo C¹ ¹IBCCF-UFRJ, ²IOC-FIOCRUZ

04.054

Kinetics of tissue response to orthodontic forces in mice: mechanical stimulation leads to bone remodeling through differential expression of osteoclast and osteoblast related factors. Garlet TP¹, Tadei SR², Silva TA³, Garlet GP⁴, Cunha FQ¹¹FMRP-USP, ²ICB-UFMG, ³UFMG – Patologia, ⁴FOB-USP

04.055

Signaling transduction pathway involved in LPS-induced suppression of melatonin production by rat pineal gland. Cruz-Machado SS¹, Pinato, L², Carvalho-Sousa CE¹, Tamura EK¹, Ferreira ZS¹, Markus RP¹ ¹IB-USP – Fisiologia, ²UNESP – Fonoaudiologia

04.056

Enhanced airway smooth muscle reactivity to cholinergic provocation is associated to mast cells in A/J mice. Anjos-Valotta EA, Farias-Filho FA, Serra MF, Cordeiro RSB, Silva PMR, Martins MA FIOCRUZ – Inflamação

04.057

Prior exposure to staphylococcal enterotoxin type B (SEB) potentiates the pulmonary eosinophil

infiltration of allergic mice. Squebola Cola DM¹, Mello GC¹, Schenka A², Souza IA¹, Antunes E¹¹FCM-UNICAMP – Farmacologia, ²FCM-UNICAMP – Patologia

04.058

Role of mast cells on the production of CINC-2, migration of neutrophils and bone resorption in SHR animals submitted to periodontal disease. Belini L¹, Salzedas LMP², Oliveira SHP¹ ¹FO-UNESP-Araçatuba – Ciências Básicas, ²UNESP-Araçatuba – Radiologia

04.059

Modulation of FCgR-mediated phagocytosis in macrophages by TLRS agonists: involvement of 5-LO products. Pinheiro CS¹, Monteiro APT², Benjamim CF³, Canetti C¹¹IBCCF-UFRJ, ²UERJ – Farmacologia e Psicobiologia, ³UFRJ – Farmacologia Básica e Clínica

04.060

Odontoblasts stimulated by lipopolysaccharide express SCF and FGF-2 via p42/44, p38 and PI3K. Santos VAC¹, Oliveira SHP² ¹FOA-UNESP – Odontologia Social e Preventiva e Ciências Básicas, ²FOA-UNESP – Ciências Básicas

04.061

Role of *GILZ* (glucocorticoid-induced leucine zipper) on resolution of inflammation. Nogueira CRC¹, Tavares LP¹, Silva JPV¹, Queiroz ALL¹, Silva DM¹, Soriani FM¹, Russo RC¹, Garcia CC¹, Lopes F², Pinho V¹, Teixeira MM¹, Sousa LP³ ¹UFMG – Bioquímica e Imunologia, ²UFMG – Morfologia, ³UFMG – Patologia Clínica – COLTEC

04.062

Evaluation of the anti-inflammatory effect of mycofenolate mofetil in mice LPS-induced pleurisy. Beduschi MG¹, Darmarco ED³, Frode TS², Guimarães CL⁴ ¹FURB – Medicina, ²UFSC – Análises Clínicas, ³FURB – Farmácia, ⁴FURB – Ciências Farmacêuticas

04.063

CC chemokine receptors play different roles in the pathogenesis of dengue virus infection in mice. Guabiraba R¹, Pereira-Silva REM¹, Besnard AG², Souza DG³, Ryffel B², Teixeira MM¹¹UFMG – Bioquímica e Imunologia, ²CNRS-IEM, ³UFMG – Microbiologia

04.064

Inhibition of guanylyl cyclase restores neutrophil migration and maintains bactericidal activity increasing survival in sepsis. Amêndola R¹, Neto H², Souto FO³, Alves-Filho JC³, Spiller F³, Freitas A³, Cunha FQ³, Barja Fidalgo TC² ¹UERJ – Farmacologia e Psicobiologia, ²UERJ – Farmacologia, ³USP – Farmacologia e Dor

04.065

Anti-inflammatory effects of lovastatin on the tests of formalin and dextran-induced paw edema. Siqueira RMP¹, Gonçalves DO¹, Calou

IBF², Olinda TM¹, Figueiredo IST¹, Pinheiro CN⁴, Melo TS¹, Cavalcante, ALC⁵, Viana GSB¹ ¹UFC – Fisiologia e Farmacologia, ²UFC – Análises Clínicas, ⁴FATECI – Biomedicina, ⁵UFC – Ciências Médicas

04.066

Effect of the crude extract and the aerial parts fractions of *Sesbania virgata* on the inflammatory response in animals. Arruda LLM¹, Bonfim, N. M.², Kummer R¹, Souza, M. C.³, Sarragioto MH², Baroni S¹, Grespan R¹, Bersani-Amado CA¹ ¹UEM – Farmácia e Farmacologia, ²UEM – Química, ³UEM – Biologia

04.067

Effects of resveratrol in the acute and chronic models of inflammation in rats. Silva RBM¹, Maciel IS², Souto AA³, Morrone FB⁴, Campos MM⁵ ¹PUCRS – Farmacologia Aplicada, ²PUCRS – Farmacologia, ³PUCRS – Química, ⁴PUCRS – Farmácia, ⁵PUCRS – Cirurgia-Odontologia

04 068

Inflammatory response induced by carvacrol, a *Thymus vulgaris* essential oil constituent. Fachini FC, Kummer R, Ritter AMV, Anteguera AAC, Domiciano TP, Bersani-Amado CA, Cuman RKN UEM – Farmácia e Farmacologia

04 069

LTB4 as chemoattractant factor in the regulatory T cells migration. Pecli CP^1 , Molinaro RC^2 , Peters-Golden M^3 , Kunkel SL^4 , Canetti C^5 , Benjamim CF^1 $^1ICB-UERJ$, $^2IOC-FIOCRUZ$, 3University of Michigan – Pulmonary and Critical Care Medicine, 4University of Michigan – Pathology $^5IBCCF-UFRJ$

04.070

Ntipyretic effect of dipyrone is not related with the hypothalamic PGE2 synthesis inhibition in rats. Malvar DC, Figueiredo MM, Martins JM, Pessini AC, Soares DM, Souza GEP FCFRP-USP - Física e Química

04.071

The role of acid-induced laminin polymer in splenic dendritic cells. Ladislau L¹, Da-Fe AR², Coelho-Sampaio TL³, Kunkel SL⁴, Benjamim CF⁵¹ICB-UFRJ, ²UERJ – Farmacologia e Psicobiologia, ³UFRJ – Histologia, ⁴University of Michigan – Pathology, ⁵UFRJ – Farmacologia Básica e Clínica

04.072

Clinical evaluation of the anti-inflammatory effect of *Baccharis dracunculifolia* propolis gel (patent PI 0904121-4) on cervicitis. Paulino N¹, Scremin Paulino A², Marcucci MC¹, Vautier P¹ 1UNIBAN – Farmácia, ²UFSC – Farmácia

04.073

Activation of TLR9 in circulating neutrophils inhibits their migration to inflammatory site. Trevelin SC¹, Alves-Filho JC¹, Sônego F¹, Souto FO², Nascimento DCB², Turato W², Cunha TM¹,

Gazzinelli RT 2 , Cunha FQ 1 1 FMRP-USP – Pharmacology, 2 FMRP-USP, Immunology and Biochemistry

04.074

Effects of eotaxin in the peritoneal migration of eosinophils and neutrophils, dependent on 5-lipoxygenase products. Lages PM1, Arcanjo LCG², Lopes RS¹, Silva CLCA¹, Luz RA³, Elsas PPX⁴, Elsas MICG⁵ ¹IMPPG-UFRJ, ²IFF-FIOCRUZ, ³IFF-FIOCRUZ - Pediatria, ⁴UFRJ, ⁵FIOCRUZ

04.075

Adenosine and adenosine-monophosphate present into the *Phlebotomus papatasi* saliva block dendritic cell function and ammeliorate collagen-induced arthritis. Carregaro V¹, Sá-Nunes, A², Cunha, TM³, Grespan R⁴, Oliveira CJ¹, Lima-Jr DS⁵, Costa DL¹, Milanezi CM¹, Verri Jr WA⁵, Valenzuela JG⁶, Silva JS¹, Ribeiro JM⁶, Cunha FQ³ ¹FMRP-USP – Biochemistry and Immunology, ²ICB-USP – Immunology, ³FMRP-USP – Pharmacology, ⁴UEM – Farmácia e Farmacologia, ⁵UEL – Pathology and Pharmacology, ⁶NIAID/NIH – Vector Biology

04 076

Anti-inflammatory activity of crude extract and of flowers fractions from *Palicourea rigida* in mice. Arruda LLM¹, Rosa EA², Oliveira CMA³, Fachini RF², Silva CC², Baroni S¹, Grespan R¹, Bersani-Amado CA¹ ¹UEM – Farmácia e Farmacologia, ²UEM Química, ³UFGO – Química

04.077

Short chain-fatty acid effects on acute gout: importance in induction and resolution of inflammatory responses. Vieira AT¹, Shim D², De-Leon E², Schilter HC², Amaral FA³, Arruda MCC³, Maslowski KM², Fagundes CT³, Nicoli JR⁴, Teixeira MM³, Mackay CR² ¹Garvan Institute of Medical Research/UFMG – Arthritis and inflammation / Bioquímica e Imunologia, ²Garvan Institute of Medical Research – Arthritis and Inflammation, ³UFMG – Bioquímica e Imunologia, ⁴UFMG – Microbiologia

04.078

In vivo hydroquinone exposure affects leukocyte recruitment and adhesion molecules expression on LPS inflamed lung. Ribeiro ALT¹, Shimada ALB¹, Hebeda CB¹, Bolonheis SM¹, Tavares de Lima W², Farsky S¹ ¹USP-Clínical and Toxicological Analyses, ²ICB-USP – Pharmacology

04.079

Exogenous leptin modulates acute lung inflammation induced by LPS in mice. Landgraf MA¹, Silva RC², Hiyane M³, Cunha CS³, Vieira PMM³, Cenedeze MA², Keller AC⁴, Pacheco-Silva A⁴, Araújo RC⁶, Câmara NOS¹, Landgraf RG⁴¹ICB-USP, ²UNIFESP – Nefrologia, ³ICB-USP – Imunologia, ⁴UNIFESP-Diadema – Ciências Biológicas, ⁶UNIFESP – Biofisica

Gastroprotection and healing activities of the seeds oil from *Carapa guianensis* Aubl. in mice. Gonçalves DO¹, Figueiredo IST¹, Osório CBH¹, Siqueira RMP¹, Oliveira RSB², Freitas LBN¹, Vieira IR¹, Vasconcelos MAM³, Alencar NMN¹¹UFC – Fisiologia e Farmacologia, ²UFC – Bioquímica e Biologia Molecular, ³EMBRAPA – Agroindústria

04.081

ADP effect on skin wound healing on diabetic mice. Branco AMC¹, Brogliato AR¹, Figueiredo JB², Melo PA³, Benjamim CF³ ¹UFRJ – Farmacologia, ²ICB-UFRJ, ³UFRJ – Farmacologia Básica e Clínica

04.082

Inflammasome activation and IL-1b and IL-18 production are essential for host resistance to dengue virus primary infection. Fagundes CT¹, Ávila TV², Costa VV², Silveira KD³, Cisalpino D², Valadão DF², Tavares LD², Morcatty TQ², Santos AG², Souza RS², Vieira LQ³, Zamboni DS⁴, Souza DG² Teixeira MM³ ¹UFMG – Bioquímica e Imunologia/Microbiologia, ²UFMG – Microbiologia, ³UFMG – Bioquímica e Imunologia, ⁴FMRP-USP – Biologia Celular, Molecular e Bioagentes Patogênicos

04.083

Membrane TNF- α is essential for the pathogeneses of gouty arthritis. Tavares LD¹, Amaral FA¹, Costa VV¹, Fagundes CT², Quesniaux V³, Ryffel B⁴, Teixeira MM², Souza DG¹ ¹UFMG – Microbiologia, ²UFMG – Bioquímica e Imunologia, ³CNRS – Molecular Immunology and Embryology, ⁴IEM-CNRS

04 084

ATL-1, a synthetic analog of 15-Epi-lipoxin A4, promotes changes in dendritic cells phenotype and function. Da-Fe AR¹, Ladislau L², Kunkel SL³, Benjamim CF⁴, Fierro IM⁵ ¹UERJ – Farmacologia e Psicobiologia, ²ICB-UFRJ, ³University of Michigan – Pathology, ⁴UFRJ – Farmacologia Básica e Clínica, ⁵UERJ – Farmacologia

04.085

Platelet-Activating Factor (PAF) contributes to the neuroinflammatory process involved in the *Plasmodium berghei* ANKA infection. Lacerda-Queiroz N¹, Rodrigues DH¹, Miranda AS², Vilela MC³, Teixeira MM⁴, Teixeira AL⁵ ¹UFMG – Biologia Celular, ²UFMG – Medicina Tropical, ³UFMG – Neurociências, ⁴UFMG, ⁵UFMG – Medicina

04.086

iNOS-derived nitric oxide modulates bone loss from ligature induced periodontitis by inhibiting osteoclast differentiation and activity. Herrera BS¹, Martins Porto R², Costa SKP², Spolidório LC¹, Van Dyke TE³, Gyurko R³, Muscará MN² ¹FOAR-UNESP – Physiology and Pathology, ²ICB-

USP - Pharmacology, ³Boston University - Periodontology and Oral Biology

04.087

HQ impairs nitric oxide synthesis in neutrophils via post transcriptional modifications. Hebeda CB¹, Bolonheis SM¹, Pinedo F¹, Teixeira SA², Muscará MN², Farsky S¹ ¹USP – Análises Clínicas e Toxicológicas, ²USP – Farmacologia

04.088

Melatonin inhibits adhesion of neutrophils induced by lipopolysaccharide (LPS) in endothelial cells culture. Abrantes-Lima KD, Tamura EK, Markus RP IB-USP – Fisiologia

04.089

Interaction of the anti-inflammatory annexin A1 protein and tacrolimus immunosuppressant in the renal function of rats. Truzzi RR¹, Araújo LP², Oliani SM¹ ¹UNESP – Biology, ²UNIFESP – Morphology

04.090

Crosstalk of TLR2/CD36 with PPARg in lipid metabolism and inflammatory response during infection by *Mycobacterium bovis* BCG: role of rafts. Almeida PE¹, Antunes KM², Maya-Monteiro CM¹, Almeida CJ¹, Silva AR¹, Castro-Faria-Neto HC¹, Bozza PT¹ ¹FIOCRUZ – Fisiologia Farmacodinâmica, ²FIOCRUZ – Microbiologia

04.091

Role of PPARγ in macrophage activation but not in neutrophil recruitment during *Mycobacterium bovis* BCG infection *in vivo*. Sette-Martins R, Almeida PE, Roque NR, Bozza PT IOC-FIOCRUZ – Imunofarmacologia

04.092

Role of substance P in different endogenous pyrogen-induced fever. Brito HO, Reis RC, Zampronio AR UFPR – Farmacologia

05. Pain and Nociception

05.027

Resistance exercise induces antinociception in rats with participation of nitric oxide/_CGMP/K_{ATP} pathway. Galdino GS, Silva GC, Almeida RT, Duarte ID, Perez AC UFMG – Farmacologia

05.028

Peripheral sensitization increases opioid receptor activation and expression in both dorsal root ganglia and nerve paw of rats. Zambelli VO¹, Gutierrez VP¹, Fernandes ACO¹, Parada CA², Cury Y¹¹IBu – Dor e Sinalização, ²UNICAMP – Farmacologia

05 029

The sesquiterpene lactone, budlein A, inhibits antigen induced-arthritis inflammation in mice. Zarpelon AC¹, Pinto LG², Souto FO², Turato W³, Arakawa NS⁴, Da Costa FB⁴, Cunha TM², Ferreira SH², Cunha FQ², Silva JS⁵, Verri Jr WA¹ ¹UEL – Ciências Patológicas, ²FMRP-USP – Farmacologia, ³FCFRP-USP – Análises Clínicas,

Toxicológicas e Bromatológicas, ⁴FCFRP-USP, ⁵FMRP-USP - Imunologia

05.030

LASSBio-294 has partial agonist and antagonistic actions on TRPV1. Munaro DV1, Barreiro EJ^2 , Fraga CAM², Castro Guimarães MZP⁴ ¹UFRJ - Biofísica, ²FF-UFRJ -3UFRJ LASSBio, UFRJ, Farmacologia Molecular, ⁴UFRJ - Farmacologia Básica e Clínica

05.031

Study of anti-inflammatory and antinociceptive properties of new derivatives rationally designed as PPAR agonists. Santos BLR, Lima CKF, D'Andrea ED, Lima LM, Barreiro EJ, Miranda ALP FF-UFRJ – LASSBio

05.032

Ketamine/fentanyl administration in infant rats promotes analgesia associated with increased hydrolysis of nucleotides. Medeiros LF¹, Souza A², Rozisky JR¹, Santos VS¹, Netto CA², Battastini AMO², Torres ILS¹ ¹UFRGS – Farmacologia, ²UFRGS – Bioquímica

05.033

Evaluation of some mechanisms involved in antinociceptive effect of (-)epicatechin obtained from *Combretum leprosum* Mart. & Eicher (Combretaceae) in models of acute pain. Lopes LS¹, Pereira SS¹, Marques RB¹, Ayres MCC², Chaves MH², Almeida FRC³ ¹NPPM-CCS-UFPI, ²UFPI – Chemistry, ³UFPI – Biochemistry and Pharmacology

05.034

Preliminary studies of possible mechanisms involved in the antinociception presented by aterpineol, a major constituent of essential oil from *Protium heptaphyllum* March. resin. Marques RB¹, Lopes LS¹, Fernandes, HB¹, Pereira SS¹, Chaves MH², Oliveira, FA¹, Almeida FRC³ ¹NPPM-CCS-UFPI, ²UFPI – Chemistry, ³UFPI – Biochemistry and Pharmacology

05.035

Antinociceptive effect of (-) epicatechin obtained from *Combretum leprosum* Mart. & Eicher (Combretaceae) in models of acute pain. Lopes LS¹, Fernandes, HB¹, Pereira SS¹, Marques, RB¹, Ayres MCC², Chaves MH², Almeida FRC¹ ¹NPPM-CCS-UFPI, ²CCN-UFPI – Química

05 036

Antinociceptive activity of new isatin derivatives. Figueiredo GSM¹, Zardo RS¹, Silva BV², Matheus ME¹, Pinto AC³, Fernandes PD¹ ¹UFRJ – Farmacologia Básica e Clínica, ²IQ-UFRJ – Química Orgânica, ³UFRJ – Química

05.037

Involvement of adenosinergic system in the antinociceptive effect of ethanolic extract of *Cipura paludosa* Aubl. in mice. Macedo Junior SJ¹, Lucena GMRS², Nascimento FP³, Cerutti M³,

Santos ARS¹ ¹UFSC - Ciências Fisiológicas, ²UnB - Ciências da Saúde, ³UFSC - Farmacologia

05.038

Direct blockade of inflammatory hypernociception by peripheral activation of the A1 adenosine receptor: involvement of the NO/cGMP/PKG/KATP signaling pathway. Cunha TM¹, Lima FO¹, Souza GR¹, Verri Jr WA², Parada CA³, Ferreira SH¹, Cunha FQ¹ ¹FMRP-USP – Farmacologia, ²UEL – Ciências Patológicas, ³UNICAMP – Farmacologia, ⁵FMRP-USP

05.039

Ropivacaine gel for topical anesthesia: *in vitro* permeation skin and cytotoxic effects. Stoco SM¹, Grillo R², Mello NFS², Guilherme VA¹, Franz-Montan M¹, Tófoli GR³, Fraceto LF², de Paula E¹, de Araújo DR⁴ ¹UNICAMP – Bioquímica, ²UNESP – Engenharia Ambiental, ³UNIFAG – Farmacologia Clínica, ⁴CCNH-UFABC – Farmacologia

05.040

The armed spider toxin TX3-3 restores the analgesic effect of morphine in neuropathic and opioid-tolerant mice. Dalmolin GD¹, Rigo FK¹, Silva CR², Gomez MV¹, Ferreira J² ¹UFMG – Farmacologia, ²UFSM – Química

05.041

Celecoxib induces analgesia by release of B-Endorphin in rat paws. Paiva-Lima P¹, Queiroz Junior CM¹, Rezende RM², Machado-Silva LDF², Caliari MV³, Bakhle YS⁴, Francischi JN¹ ¹UFMG – Farmacologia, ²UFMG – Fisiologia e Farmacologia, ³UFMG – Patologia, ⁴Imperial College – Leukocyte Biology

05.042

Antinociceptive and anti-inflammatory effect of electroacupuncture in zymosan-induced arthritis in the rat temporomandibular joint. Gondim DV¹, Chaves, HV¹, Costa JL², Rocha SS², Brito GAC³, Vale ML² ¹UFC – Medicina Clínica, ²UFC – Fisiologia e Farmacologia, ³UFC – Morfologia

05.043

Macrophage Migration Inhibitory Factor (MIF) is involved in a cascade of events leading to inflammatory hypernociception in mice. Costa VV¹, Amaral FA², Sachs D³, Tavares LD⁴, Scopa IP², Morcatty TQ¹, Teixeira MM¹, Souza DG² ¹UFMG – Bioquímica e Imunologia, ²UFMG – Microbiologia, ³FMRP-USP – Farmacologia, ⁴UFMG – Fisiologia e Farmacologia

05.044

Role of TRPV1 and NK1 receptors on nociception and edema induced by monosodium urate crystals in rats (MSU). Trevisan G, Rossato M, Hoffmeister C, Ferreira J UFSM – Química

The antinociception observed during glycogeninduced inflammation in rat paws is mediated by neutrophil migration and is independent of opioid peptides. Nogueira TO¹, Spadacci-Morena DD¹, Santoro ML¹, Pagano RL², Giorgi R¹ ¹IBu – Fisiopatologia, ²IEP-HSL

05.046

Ropivacaine gel for topical anesthesia: *in vitro* permeation skin and cytotoxic effects. Stoco SM¹, Grillo R², Mello NFS², Guilherme VA¹, Franz-Montan M¹, Tófoli GR³, Fraceto LF², de Paula E¹, de Araújo DR⁴ – ¹UNICAMP – Bioquímica, ²UNESP – Engenharia Ambiental, ³UNIFAG – Farmacologia, ⁴CCNH-UFABC – Farmacologia

05.047

Cannabinoid and opioid receptors activation induces peripheral antinociception by noradrenaline release and α_{2C} adrenoceptor interaction. Romero TRL¹, Duarte IDG² ¹UFMG – Fisiologia e Farmacologia, 2 UFMG – Farmacologia

05.048

Antinociceptive effects of *Parkia platycephala* Benth in diabetic rats. Amorim VR¹, Brito SRMC², Sales Filho HLA³, Piauilino, CA⁴, Chaves MH⁵, Bezerra RDS⁵ ¹UFPI – Farmacologia, ²UFPI – Bioquímica e Farmacologia, ³UFPI – Farmacologia, ⁴UFPI-NPPM-UFPI, ⁵UFPI – Ouímica

05.049

Effects of thalamic nucleus submedius inhibition on the stimulation-induced antinociception in rats Reis GM, Rossaneis AC, Fais RS, Prado WA FMRP-USP – Farmacologia

05.050

Amitriptyline increases the duration of the antinociceptive effect produced by 2 Hz electroacupuncture in rats. Fais RS, Reis GM², Dias QM¹, Silveira JWS¹, Prado WA³ FMRP-USP – Farmacologia

05.051

Role of IL-33 / ST2 in carrageenin-induced innate inflammatory hypernociception in mice. Zarpelon AC¹, Cunha, TM², Xu D³, Alves-Filho JC³, Liew FY³, Ferreira SH², Cunha FQ², Verri Jr WA¹ ¹UEL – Patologia, ²FMRP-USP – Pharmacology, ³University of Glasgow – Immunology, Infection and Inflammation

05.052

Antinociceptive property of selenothiazolidines administered by oral route in mice. Frasson NR¹, Donato F¹, Schneider PH², Savegnago L¹¹UNIPAMPA – Farmacologia e Toxicologia, ²UFRGS – Química

06. Cardiovascular and Renal Pharmacology

06.027

Cardiac dysfunction in experimental sepsis as assessed by the isolated and perfused mouse heart. Bóf ER, DalBó S, Ramos GC, Assreuy J UFSC – Pharmacology

06.028

Sepsis-induced renal impairment to a second renal insult. Portella VG¹, Silva-Filho JL¹, de Rico TB², Landgraf SS¹, Vieira MAR³, Takiya CM⁴, Benjamim CF², Canetti C¹, Pinheiro AAS¹, Caruso-Neves C¹¹IBCCF-UFRJ – Ciências da Saúde, ²ICB-UFRJ – Farmacologia, ³ICB-UFMG – Fisiologia e Biofisica, ⁴ICB-UFRJ – Anatomia e Histologia

06.029

Effects of antioxidants treatment on cardiac dysfunction and MMP-2 levels in renovascular hypertension. Rizzi E¹, Castro MM¹, Ceron CS¹, Neto-Neves EM¹, Tanus-Santos JE¹, Gerlach RF² ¹FMRP-USP – Farmacologia, ²FORP-USP – Morfologia

06.030

Role of potassium channels in endothelium-dependent vasodilation in experimental periodontits in rats. Olchanheski Junior LR¹, Santos FA², Fernandes D¹ ¹UEPG – Ciências Farmacêuticas, ²UEPG – Odontologia

06.031

Inhibition of MMP-mediated vascular changes in 2K1C hypertension by doxycycline is dose-dependent. Guimarães DA¹, Rizzi E¹, Ceron CS¹, Oliveira AM², Marçal DMO⁵, Tirapelli CR⁵, Gerlach RF⁶, Tanus-Santos JE¹ ¹FMRP-USP − Farmacologia, ²FCFRP-USP − Farmacologia, ²FCFRP-USP − Farmacologia, °FORP-USP − Morfologia

06.032

New nitrite-pro-drug releases nitric oxide in a tissue and enzyme-dependent way. Pereira AC¹, Lunardi CN², Biazzotto JC¹, Silva RS¹, Bendhack LM¹ ¹FCFRP-USP, ²UnB

06.033

Effect of rosmarinic acid on the inhibition of angiotensin converting enzyme in normotensive and hypertensive rats. Ferreira LG, Celotto AC, Capellini VK, Albuquerque AAS, Evora PRB FMRP-USP – Cirurgia e Anatomia

06.034

Modulation of cardiac and renal P-type ATPases in diet-induced atherosclerosis. Balter AS, Marques EB^1 , Motta NAV^1 , Brito FCF^1 , Scaramello C^1 1UFF – Farmacologia Experimental

A new vasodilator compound (DCBPY-NO) presents cyclic activity in releasing nitric oxide by nitrite. Rodrigues GJ¹, Cicillini SA², Silva RS², Bendhack LM² ¹FMRP USP – Farmacologia, ²FCFRP-USP

06.036

The renal effects of l-amino acid oxidase from *Bothrops leucurus* venom in the rat perfused kidneys. Morais ICO¹, Marinho AD², Menezes RRPPB³, Dantas RT¹, Torres AFC², Lopes KS², Meneses GC², Costa MFB², Jorge RJB¹, Alves RS¹, Toyama MH⁴, Monteiro HSA¹, Martins AMC³¹UFC – Fisiologia e Farmacologia, ²UFC – Farmácia, ³UFC – Análises Clínicas e Toxicológicas, ⁴IB-UNICAMP

06.037

Tempol attenuates the hemodynamic changes associated with acute pulmonary embolism. Santos Sousa O¹, Neto-Neves EM¹, Ferraz KC², Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²UFJF – Farmacologia

06.038

Impaired cardiovascular responsiveness to isoprenaline in rats subjected to high-salt intake. Crestani S^1 , de Souza P^1 , Bóf ER^2 , Guarido KL², Assreuy J², Marques MCA¹, da Silva-Santos JE² ¹UFPR – Farmacologia, ²UFSC – Farmacologia

06.039

High salt-intake increases the activity of angiotensin-converting enzyme in rats. Crestani S^1 , Gasparotto Junior A^2 , Marques MCA 1 , da Silva-Santos JE 3 1 UFPR – Farmacologia, 2 UNIPAR/UFPR – Farmacologia, 3 UFSC – Farmacologia

06.040

Quercetin produces beneficial effects in renovascular hypertension. Neto-Neves EM, Montenegro MF, Ceron CS, Dias-Junior CAC, Castro MM, Tanus-Santos JE FMRP-USP – Farmacologia

06.041

Neonatal hyperleptinaemia possibly modulates cardiac function. Marques EB¹, Balter AS¹, Pereira-Toste F², Raimundo JM³, Sudo RT³, Zapata-Sudo G³, Marques SA⁴, Vieyra A⁵, Scaramello C¹ ¹UFF – Farmacologia Experimental, ²UFF – Ciências do Exercício, ³UFRJ – Farmacologia Básica e Clínica, ⁴UFRJ – Histologia e Embriologia, ⁵IBCCF-UFRJ

06.042

High-salt intake impairs the involvement of Rho-A/Rho-kinase and intracellular calcium in contractile responses of rat aortic rings. Crestani S¹, Marques MCA¹, da Silva-Santos JE² ¹UFPR – Farmacologia, ²UFSC – Farmacologia

06.043

A sulfonamide compound attenuates vascular smooth muscle contraction and lowers arterial pressure of normotensive and spontaneously hypertensive rats. Pontes LB¹, Raimundo JM¹, Sudo RT¹, Lima LM², Barreiro EJ², Zapata-Sudo G¹ ¹UFRJ – Farmacologia Básica e Clínica, ²FF-UFRJ – LASSBio

06.044

New NO donor induces relaxation of mesenteric resistance arteries and reduces resistance of mesenteric bed of normotensive and 2K-1C hypertensive rats. Araújo AV¹, Rodrigues GJ¹, Vercesi JA², Biazzotto JC², Bonagamba LGH³, Machado BH³, Silva RS², Bendhack LM² ¹FMRP-USP – Farmacologia, ²FCFRP-USP – Fisica e Química, ³FMRP-USP – Fisiologia

06.045

Vasodilation induced by atrial natriuretic peptide (ANP) involves K_{ATP} channels activation in rat aorta. Andrade FA1, Bendhack LM2 $^1FMRP-USP$, $^2FCFRP-USP$

06.046

Cardiovascular hyporresponsiveness in severe sepsis is related with augment of G-protein receptor kinase (GRK)-2 expression via a nitric oxide-dependent mechanism. Dal-Secco D¹, Olivon VC², Corrêa T¹, Celes MRN³, Abreu A³, Rossi MA³, Oliveira AM², Cunha FQ⁴, Assreuy J¹¹UFSC – Farmacologia, ²FCFRP-USP – Física e Química, ³FMRP-USP – Patologia, ⁴FMRP-USP – Farmacologia

06.047

Vasorelaxant effect of Isotirumalin, a dihydroflavonol from *Derris urucu*, on rat aorta. Mendes LJ¹, Capettini LSA², Arruda MSP³, Lemos VS², Côrtes SF¹ ¹UFMG – Farmacologia, ²ICB-UFMG – Fisiologia e Biofisica, ³UFPA – Química

06.048

Echocardiography aspects of structural changes in different morphological and functional models of hypertension in SHR. Pereira DJ¹, Gazzoto AF¹, Pires NF¹, Moreira MM¹, Santos RC¹, Ludovico ND¹, Quinaglia TSS¹, Renno AL², Figueiredo VN¹, Moreno Junior H¹ ¹UNICAMP – Farmacologia cardiovascular, ²UNICAMP – Farmacologia Bioquímica

06.049

Development and validation of analytical method for quantification of arsenic and antimony in liposomes. Reis PG, Souza J, Teixeira MC, Grabe-Guimarães A, Silva-Barcellos NM UFOP – Farmácia

06.050

Spontaneously hypertensive rats (SHR) under chronic treatment with sodium fluoride showed reduced fluoride and calcium concentrations in plasma and saliva. Picco DCR¹, Delbem ACB¹,

Antoniali C² ¹FOA-UNESP - Odontologia Infantil e Social, ²UNESP-Araçatuba - Ciências Básicas

06.051

 $\rm H_2O_2$ -induced vasodilatation through neuronal nitric oxide synthase activation by a natural xanthone. Capettini LSA¹, Silva JF¹, Dos Santos MH², Nagem TJ³, Côrtes SF⁴, Lemos VS¹¹ICB-UFMG Fisiologia e Biofísica, ²UNIFAL-MG – Farmácia, ³UFOP – Química, 4 UFMG – Farmacologia

06.052

Consequences of acute or chronic stress on relaxation induced by angiotensin 1-7 in rat carotid. Banin TM^1 , Olivon VC^1 , Ramalho L^2 , de Oliveira AM^1 1USP – Física e Química, 2USP – Patologia

09. Natural Products and Toxinology

09 036

Investigation of gastroprotective effect and 50 lethal concentration of the ethanolic extract from Combretum duarteanum cambess (Combretaceae). Lima GRM, Montenegro CA, Almeida CLF, Pessoa DR, Moreira MMB, Castello Branco MVS, Tavares JF, Batista LM LTF-DCF-UFPB

09.037

Mechanisms involved in the antinociceptive effect of the ethanolic extract from the leaves of Celtis iguanaea (jacq.) Sargent (Ulmaceae). Nascimento MVM¹, Lino RC¹, Sousa BF¹, Florentino FI¹, Galdino PM¹, Couto, RO², Paula JR², Costa EA¹ ICB-UFG, ²UFG – Farmácia

09.038

Effects of amblyomin-X on tumor growth, endothelial cell migration, adhesion and secretion. Dias RYS¹, Drewes CC¹, Hebeda CB¹, Simons SM², Chudzinski-Tavassi AM², Farsky S¹¹FCF-USP Análises Clínicas e Toxicológicas, ²IBu – Laboratório de Bioquímica

09 039

Healing properties of bark extract of *Tabebuia avellanedae* in chronic gastric ulcer induced by acetic acid in rats. Pereira IT¹, Burci LM¹, da Silva LM¹, Baggio CH¹, Andre E², Pizzolatti MG³, Marques MCA¹, Werner MFP⁴ ¹UFPR – Farmacologia, ²UFRN – Farmacologia, ³UFSC – Química, ⁴UFSC – Farmacologia

09.040

Subfraction of *Pterodon pubescens* seeds oil induces apoptosis of leukemic cells by inducing Apaf-1 gene expression. Martino T, Pereira MF, Dalmau SR, Silva MCC, Coelho MGP, Sabino KCC UERJ – Bioquímica

09.041

Antinociceptive effects of $(1\rightarrow 3)$, $(1\rightarrow 6)$ -linked b-glucan isolated from *Pleurotus pulmonarius* in models of acute and neuropathic pain in mice. Baggio CH¹, Freitas CS¹, Werner MFP², Martins

DF³, Mazzardo L³, Smiderle FR⁴, Sassaki GL⁴, Iacomini M⁴, Marques MCA¹, Santos ARS⁵ ¹UFPR - Farmacologia, ²UFSC - Farmacologia, ³UFSC - Fisiologia, ⁴UFPR - Bioquímica, ⁵UFSC - Ciências Fisiológicas

09.042

Effect of p-cymene obtained from *Citrus latifolia* Tanaka essential oil on *in vitro* leukocytes chemotaxis. Kummer R¹, Fachini FC¹, Silva CFE¹, Freitag A¹, Silva EL², Grespan R¹, Bersani-Amado CA¹, Cuman RKN¹ ¹UEM – Farmácia e Farmacologia, ²UEM – Química

09.043

Effect of eugenol treatment on renal parameters after renal ischemia and reperfusion in mice. Damião MJ¹, Victor ML¹, Fonseca JP¹, Bersani-Amado CA¹, Rilson JP¹, Giannocco G², Câmara NOS³, Cuman RKN¹ ¹UEM – Farmácia e Farmacologia, ²UNIFESP – Endocrinologia, ³ICB-USP

09.044

Cardiovascular activity *Hancornia speciosa* ethanolic extract in a model of hypertension induced by nitric oxide synthesis inhibition in rats. Silva MDA¹, Serra CP², Grabe-Guimarães A², Guimarães HN³, Braga FC⁴ ¹CiPharma-UFOP, ²DEFAR-UFOP, ³UFMG – Engenharia Elétrica, ⁴FaFar -UFMG

09.045

Investigation of toxic and antidiarrhoeal activities of ethanol extract of aerial parts from *Xylopia langsdorffiana* A. St. Hil. & Tul. (Annonaceae) in mice. Silva KM¹, Silva ADS¹, Lima LO¹, Clementino-Neto J¹, Silva PCB², Medeiros VM², Costa VCO², Tavares JF², Silva MS², Cavalcante FA¹¹ICBS-UFAL, ²LTF-UFPB

09.046

Investigation of topical anti-inflammatory activity of *Vochysia bifalcata*. Silva CD¹, Mendes DAGB¹, Soley BS¹, Ferreira BGA², Zuffellato-Ribas KC², Otuki MF¹, Cabrini DA¹ ¹UFPR – Farmacologia, ²UFPR – Botânica

09.047

Anti-inflammatory effect of latex proteins (LP) isolated from *calotropis procera* in 5-fluorouracil-induced oral mucositis in hamsters. Freitas APF¹, Almeida RA², Cerqueira GS², Alencar NMN², Brito GAC³, Ribeiro RA², Ramos MV⁴, Vale ML² ¹UFC – Medicina Clínica, ²UFC – Fisiologia e Farmacologia, ³UFC – Morfologia, ⁴UFC – Bioquímica

09.048

Evaluation of antimicrobial activity and preliminary phytochemical profile of *Hyptis suaveolens* L. Poit. Jesus NZT¹, Mota FD², Silva Junior IF³, Tavares JF⁴, Batista LM⁵ ¹UNIC-UFPB-LTF, ²UNIC – Farmácia, ³UFMT – Farmacologia, ⁴UFPB – Tecnologia Farmacêutica, ⁵UFPB – Ciências Farmacêuticas

Acute toxicity and gastric cytoprotective effect of *Argyrovernonia harleyi* (H. ROB) Macleish in mice. Silva AAR¹, Bezerra MM³, Aguiar, JA², Chaves, HV⁴, Ribeiro, KA⁵, Pereira, KMA⁴, Maia, MBS⁶ ¹UFC – Pharmacology Laboratory, ²UFC – Medicine, ³UFC – Biotechnology, ⁴UFC – Pharmacology Laboratory, ⁵UVA – Pharmacology, ⁶UFPE – Pharmacology and Toxicology of Bioactive Products

09.050

(+)-cordiaquinone J triggers both death receptor-dependent apoptosis and necrosis by oxidative stress pathway in leukemia cells. Marinho-Filho JDB¹, Araújo AJ¹, Bezerra DP², Montenegro RC³, Pessoa C¹, Diniz J³, Viana FA⁴, Pessoa ODL⁴, Silveira ER⁴, Moraes MO¹, Costa-Lotufo LV¹¹UFC – Fisiologia e Farmacologia, ²UFAL, ³UERN – Química, ⁴UFC – Química Orgânica e Inorgânica

09.051

Anti-inflammatory activity of anethole obtained from *Foeniculum vulgare* Miller var. *vulgare* Miller essential oil. Domiciano TP¹, Ritter AMV¹, Silva EL², Dantas JA¹, Caparroz-Assef SM³, Cuman RKN¹, Bersani-Amado CA¹ ¹UEM – Farmácia e Farmacologia, ²UEM – Química, ³UEM – Inflamação

09.052

Evaluation of antimicrobial activity of ethanol extract of the aerial parts of *Nanuza plicata* (Mart.) L. B. Smith & Ayensu. Tenório JAB¹, Mendes JM¹, Falcão HS¹, Lima EO², Marculino DMM¹, Tavares JF¹, Batista LM¹, Montes RC¹¹UFPB – Ciências Farmacêuticas, ²UFPB – Micologia

09.053

Evaluation of the effects of jatobá juice concentrating on the glucemic control, lipid profile and liver function of diabetic rats. Almeida IP¹, Damasceno DCF¹, Sales ALCC², Teixeira JMR¹, Soares LFM¹, Santos Júnior JC¹, Amorim VR³, Silva AFS³, Assis RC³, Martins MCC¹¹UFPI – Biophysics and Physiology, ²UFPI – Nutrition, ³UFPI – Biochemistry and Pharmacology

09.054

Inhibitory effects of ginger (*Zingiber officinale* Roscoe) essential oil on *in vivo* and *in vitro* leukocytes migration. Grespan R, Nogueira de Melo GA, Fonseca JP, Farinha TO, Dantas JA, Miranda CR, Bersani-Amado CA, Cuman RKN UEM – Pharmacy and Pharmacology

09.055

Hypoglycemic effect of *Terminalia catappa* Linn. in alloxan-induced diabetic rats. Ferreira AKB¹, Costa DL², Tenório EP¹, Oliveira DA¹, Santana AEG², Humberto MMS², Grillo LAM¹, Ribeiro EAN¹ ¹ESENFAR-UFAL, ²IQB-UFAL

09.056

Fraction from *Calotropis procera* Latex shows anti-inflammatory effects on the pathogenesis of irinotecan-induced intestinal mucositis in mice. Alverne SM¹, Bitencourt FS¹, Figueiredo JG², Luz PB¹, Lima-Júnior RCP¹, Ramos MV³, Cunha FQ⁴, Ribeiro RA¹, Alencar NMN¹ ¹UFC – Fisiologia e Farmacologia, ²UFC – Bioquímica e Biologia Molecular, ³UFC – Bioquímica, ⁴FMRP-USP

09.057

Ability of fucosylated chondroitin sulfate to inhibit muscle damage induced by *Bothrops jararacussu* crude snake venom. Machado MM¹, Strauch MA¹, Tomaz MA¹, Cons BL¹, Branco AMC¹, Martins VV¹, Mourão PAS², Melo PA¹ ¹UFRJ – Farmacologia Básica e Clínica, ²UFRJ – Bioquímica Médica

09.058

Evaluation of the toxicity of the ethanol extract of aerial parts of *Nanuza plicata* (Mart.) L. B. Smith & Ayensu.Tenório JAB¹, Falcão HS¹, Viana WP², Dias GEN¹, Batista LM¹, Diniz MFFM¹, Tavares JF¹ ¹LTF-UFPB - Ciências Farmacêuticas, ²UFPB - Ciências da Saúde

09.059

Fish oil supplementation on motor and cognitive side effects of typical antipsychotics in psychiatric patients. Bürger ME¹, Cardoso PM², Reckziegel P², Pase CS², Emanuelli, T³, Santos DB⁴, Cunha A⁵, Rocha JBT⁴ ¹UFSM − Farmacologia, ²UFSM − Fisiologia e Farmacologia, ³UFSM − Tecnologia e Ciência dos Alimentos, ⁴UFSM − Química, ⁵UFSM − Neuropsiquiatria

09.060

Anti-inflammatory activity of the hydroalcoholic extract and fractions from *Gochnatia polymorpha ssp floccosa* in mouse air pouch model. Piornedo RR¹, Kassuya CAL², Zampronio AR¹, Stefanello MEA³, Strapasson RLB³ ¹UFPR – Farmacologia, ²UFGD – Ciências da Saúde, ³UFPR – Química

09.061

In vitro chlorogenic acid inhibits adhesion molecules expression and inflammatory mediators secretion in neutrophils. Bolonheis SM¹, Hebeda CB¹, Belinati KD¹, Lopes NP², Farsky S¹¹FCF-USP – Análises Clínicas e Toxicológicas, ²FCFRP-USP – Física e Química

09.062

Topical effect of crude hydroalcoholic extract from *Psychotria nuda* (Cham. & Schltdl.) Wawra leaves in skin inflammation model. Mendes DAGB¹, Soley BS¹, Ferreira BGA², Zuffellato-Ribas KC², Otuki MF¹, Cabrini DA¹ ¹UFPR – Farmacologia, ²UFPR – Botânica

09.063

Ethanol crude extract of *Erythroxylum caatingae* induces relaxant effect in the guinea-pig trachea. Santos HAS¹, Oliveira SL², Tavares JF², Ribeiro LAA³, Lima JT³ ¹UNIVASF – Medicina, ²UFPB –

Tecnologia Farmacêutica, ³UNIVASF - Ciências Farmacêuticas

09.064

Effect of LED treatment on muscular edema and mionecrose induced by *Bothrops jararaca* venom. Bulgarelli¹, Barbosa AM², Lima CJ³, Zamuner SR⁴ ¹UNIVAP – Fisiologia e Inflamação, ²UNIVAP – Pesquisa e Desenvolvimento, ³UNICASTELO – Instrumentação Optobiomédica, ⁴UNINOVE – Ciências da Reabilitação

09.065

Modulation of gene expression in melanoma cells by treatment with crotamine. Moura AB¹, Yonamine CM¹, Pellegrino R², Oliveira EB³, Yamane T⁴, Lapa AJ¹, Hayashi MA¹ ¹UNIFESP – Farmacologia, ²UNIFESP – Psicobiologia, ³FMRP-USP – Biochemistry and Immunology, ⁴CBA – Bioquímica e Biologia Molecular

09.066

Preliminary biochemical and pharmacological characterizations of *Rhinela icterica* toad venom. Pesamosca ME, Freitas TC, Franco JL, Dal Belo CA UNIPAMPA

09.067

Evaluation of antinociceptive property of ethanolic extract of *Sidastrum micranthum* (A. St.-Hil.) Fryxell. Villa JKD¹, Marinho DG², Dias DM¹, Ramiro JB¹, Scherrer JV¹, Faccim AG¹, Almança CCJ³, Marinho BG¹ ¹UFES – Medicina Veterinária, ²ICB-UFRJ – Farmacologia e Química Medicinal, ³FAFIA – Farmácia

09.068

Endothelium-dependent and independent relaxation of rat aortic ring by crude extracts and fractions from Scutia buxifolia. Silva RCMVAF¹, Crestani S¹, Boligon AA², Athayde ML2, Santos ARS3, Marques MCA1, Kassuya ¹UFPR da Silva-Santos JE^4 CAL^{1} , Farmacologia, ²UFSM - Farmácia Industrial, 3UFSC _ Ciências Fisiológicas, ⁴UFPA Farmacologia Experimental e Pré-clínica

09.069

Anti-inflammatory and antinociceptive activity of the ethanolic extract from *Sinningia leucotricha*. Botelho A¹, Verdan ML², Stefanello MEA², Kassuya CAL³, Zampronio AR¹ ¹UFPR – Farmacologia, ²UFPR – Química, ³UFGD – Ciências da Saúde

09.070

Preliminary evaluation of wound healing activity of the aqueous extract from stem bark of *Bowdichia virgilioides*. Agra IKR, Santos TC, Smaniotto S, Barreto E UFAL – Biologia Celular

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology

11.012

Efficacy evaluation of the therapeutic protocols used to treatment of TMDR patients in a respiratory diseases reference centre, in Salvador, Bahia, Brazil. Pitanga QML¹, Santos CBS¹, Pitta LB¹, Pinheiro CG¹, Carvalho JSM.², Carvalho FLDQ¹ ¹UNEB – Ciências da Vida, ²UNIJORGE – Saúde

11.013

Quantification of cyproheptadine in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry in a bioequivalence study. Arruda AMM¹, Mendes GD¹, Chen LS², Nucci G¹¹FCM-UNICAMP – Farmacologia/FCM, ²Galeno Research Unit – Bioequivalence

11.014

Multi-drug resistance tuberculosis: association between comorbidities, drug resistance and treatment. Santos CBS¹, Pitanga QML¹, Pitta, LB², Pinheiro CG², Carvalho JSM², Carvalho FLDQ¹ ¹UNEB – Ciências da Vida, ²UNIJORGE – Saúde

11.015

Specific matrix metalloproteinase-9 (MMP-9) genotype and haplotype in obese children and adolescents. Belo VA¹, Souza-Costa DC², Carneiro PC³, Lanna CM⁴, Izidoro-Toledo TC³, Gerlach RF⁵, Tanus-Santos JE³ ¹UNICAMP – Farmacologia, ²UFJF – Farmacologia, ³FMRP-USP – Farmacologia, ⁴UFJF – Fisiologia, ⁵FORP-USP – Morfologia

11.016

Adverse reactions to chemotherapy for breast cancer: influence of clinical and histopathologic variables. Índio-do-Brasil V¹, Telles C¹, Vianna-Jorge R², Koifman S³ ¹INCa – Farmacologia, ²UFRJ – Farmacologia Básica e Clínica, ³ENSP-FIOCRUZ – Saúde Pública e Meio Ambiente

11.017

Evaluation of the toxicity of the ethanolic extract of *Gracilaria ferox* J. Agardh (Gracilariaceae) leaves. Almeida CLF, Falcão HS, Montenegro CA, Lima GRM, Ramirez RRA, Souza MFV, Batista LM LTF-DCF-UFPB

11.018

Adverse reactions to chemotherapy for breast cancer and impact of genetic polymorphisms. Martins CL¹, Índio-do-Brasil V¹, Telles C¹, Vianna-Jorge R², Koifman S³ ¹INCa – Farmacologia, ²UFRJ – Farmacologia Básica e Clínica ³ENSP-FIOCRUZ –Saúde Pública e Meio Ambiente

Pre-clinical pharmacokinetic study of LASSBio-468: a new achiral thalidomide analogue. Kaiser M¹, Haas SE², Azeredo FJ², Torres B², Brum Junior L², Uchôa FDT¹, Contri, RV², Lima LM³, Barreiro EJ³, Dalla Costa T² ¹UFRGS – Medicamentos, ²UFRGS – Ciências Farmacêuticas, ³UFRJ – LASSBio

11.020

Assessment of the pharmaceutical equivalence of captopril and propranolol hydrochloride tablets sold in the popular pharmacy program in Brazil. Pontes AV, Pimenta Costa CS, Nascimento DF, Leite ALAS, Capistrano Júnior VL, Rocha MBS, Moraes RA, Frota Bezerra FA, Moraes MEA, Moraes MO UFC – Fisiologia e Farmacologia

11.021

Reduction of nitric oxide levels after intervention with sitagliptin in type 2 diabetic patients. Capistrano Júnior VL¹, Tagliapietra JI¹, Oliveira JC¹, Pimenta Costa CS¹, Souza MHLP¹, Montenegro Jr RM², Leite ALAS¹, Frota Bezerra FA¹, Vale OC¹, Moraes MEA¹ ¹UFC – Fisiologia e Farmacologia, ²HU-UFC – Endocrinologia e Metabologia

11.022

Learning and teaching pharmacology: a case study in Rio de Janeiro, Brazil. Fidalgo-Neto AA, Lopes RM, Alves LA IOC-FIOCRUZ – Comunicação Celular

01. Cellular and Molecular Pharmacology

01.028

The C-Rel subunit from nuclear factor kappa B (NFKB) family may play a differential role in peripheral melatonin synthesis. Lapa MAPC, Ferreira ZS, Markus RP ¹IB-USP – Fisiologia

01.029

NADPH oxidase mediates heme-induced cytoskeletal alterations, endothelial permeability and increased expression of adhesion molecules in HUVEC. Nascimento-Silva V¹, Morandi V², Barja Fidalgo TC¹, Arruda MA³ ¹UERJ – Farmacologia, ²UERJ – Biologia Celular, ³FIOCRUZ – Farmanguinhos

01.030

Testosterone induces VSMC proliferation via P38-COX2-dependent, NFKB- independent pathways. Chignalia AZ¹, Munhoz CD¹, Yogi A¹, Camargo LL¹, Oliveira MA¹, Lopes LR¹, Rossoni LV², Carvalho MHC¹, Fortes ZB¹, Tostes RCA¹¹ICB-USP – Farmacologia, ²ICB-USP – Fisiologia e Biofisica

01.031

Modulation of gastrointestinal epithelial cells activation by heme. Barcellos-de-Souza P¹, Nasciutti LE², Barja Fidalgo TC¹, Arruda MA³ ¹UERJ – Farmacologia, ²UFRJ – Histologia e Embriologia, ³FIOCRUZ – Farmanguinhos

01.032

Schild analysis of the self cancelling effects of tricyclic antidepressants on alpha-1 adrenoceptor mediated responses. Nojimoto FD, Pupo AS UNESP – Farmacologia

01.033

MicroRNA *let-7b* targets AKT-1 and regulates skeletal muscle atrophy in diabetic rats. Sousa TA¹, Kato M², Paula-Gomes, S.¹, Silva VAO¹, Tragante V¹, Zanon NM¹, Wang M², Kettelhut IC¹, Natarajan R², De Lucca FL¹ ¹FMRP-USP – Biochemistry and Immunology, ²Beckman Research Institute – Gonda Diabetes Center

01 034

Expression of MicroRNAS in skeletal muscle atrophy induced by fasting in rats. Tragante V, Sousa TA, Silva VAO, Zanon NM, Kettelhut IC, De Lucca FL FMRP-USP – Biochemistry and Immunology

01.035

Evidence of a regulatory role of dystrophin on the release of acetylcholine (ACh) in the mouse brain. Della Colleta E, Nogueira FM, Campos DV, Lima-Landman MTR, Lapa AJ, Souccar C UNIFESP – Farmacologia

01.036

Facilitatory action of a quaternary derivate of lhyoscyamine on acetylcholine (ACh) release in rat cortex synaptosomes. Analysis of the mechanisms involved. Nogueira FM, Della Colleta E, Lima-Landman MTR, Lapa AJ, Souccar C UNIFESP/EPM – Farmacologia

01.037

Treatment effect of acute *in vivo* ethanol on adrenergic neurotransmission in the smooth muscle of periadolescent rats vas deferens. Silva Junior ED, Jurkiewicz A, Jurkiewicz NH UNIFESP – Farmacologia

01.038

Characterization of signaling pathways of Angiotensin I-converting enzyme in mesangial cells of spontaneously hypertensive rats (SHR). Reis RI¹, Parreiras-e-Silva LT², Becari C³, De Andrade MCC⁴, Salgado MCO³, Costa-Neto CM², Casarini DE⁵ ¹UNIFESP – Rim e Hormônios, ²FMRP-USP – Bioquímica e Imunologia, ³FMRP-USP – Farmacologia, ⁴UNIFESP – Nefrologia, ⁵UNIFESP – Medicina

01 039

Estrogen attenuates cellular death induced by $\rm H_2O_2$ in C6 cells: a role for ESR and GPER receptors. Franco LAM, Yshii LM, Lopes DCF, Sá Lima L, Scavone C, Munhoz CD ICB-USP – Farmacologia

01.040

P2Y1 receptors stimulation on rat pineal glands: effects on nuclear factor kappa B pathway (NFKB) and inducible nitric oxide synthase (iNOS). Petrilli CL, Carvalho-Sousa CE, Muxel SM, Markus RP, Ferreira ZS IB-USP – Fisiologia

02. Neuropharmacology

2.045

Imipramine facilitates adaptation to chronic stress in animals with lesions of serotonergic neurons of the median raphe nucleus. Silva K, Padovan D, Padovan CM FFCLRP-USP – Psicologia e Educação

02.046

Allopregnanolone antidepressive and stress activity evaluation after nucleus *accumbens* administration in rats. Ferri MK¹, Dalpra WL¹, Azeredo LA¹, Couto-Pereira N², Nin MS¹, Gomez R¹, Barros HMT¹ ¹UFCSPA – Farmacologia, ²UFCSPA – Ciências Fisiológicas

02.047

The expression of mRNAs encoding the flip isoforms of GLuR1 and GLuR2 are decreased in hippocampus of rats reared in isolation from weaning. Trindade LB¹, Sestito RS¹, Kerbauy LN¹, de Souza RG¹, Limonte FH¹, Iyomasa MM², Rosa ML² ¹FAMECA – Bioquímica, ²FAMECA-FIPA – Neurociências

Neuroprotective effect of propofol in model of hippocampal ischemia in rats. Binda NS¹, Pessoa FLC², Pinheiro ACN¹, Silva JF³, Lavor MSL⁴, Gomez RS⁶, Gomez MV³ ¹UFMG – Farmacologia, ²UFMG – Medicina, ³UFMG – Farmacologia Bioquímica e Molecular, ⁴UFMG–Clínica e Cirurgia Veterinária, ⁵UFMG – Cirurgia

02.049

Glial cells are important in protecting neurons after ischemia induced by glucose deprivation. Lopes DCF, Matsubara CS, Franco LAM, Sá Lima L, Scavone C, Munhoz CD ICB-USP – Farmacologia

02.050

Interaction between 5-HT $_{1A}$ receptor and a nitric oxide donor, sin-1, ON locomotor activity of rats. Gualda LBS 1 , Martins GG 2 , Guimarães FS 3 , Oliveira RMMW 1 1 UEL – Farmácia e Farmacologia, 2 UEM – Farmácia e Farmacologia, 3 FMRP-USP

02.051

Glutamatergic neurotransmission within the hypothalamic paraventricular nucleus is involved in the cardiovascular response evoked by noradrenaline microinjected into the dorsal periaqueductal gray area of rats. Pelosi GG¹, Busnardo C², Tavares RF², Corrêa FMA² ¹UEL – Farmacologia, ²FMRP-USP – Farmacologia

02.052

Relationship of long-term memory evocation and cholinergic markers in hippocampus, along the aging process of rats. Oliveira EM¹, Souza LHJ¹, Schowe NM¹, Albuquerque MS¹, Baraldi T¹, Chambergo FS¹, Pina dos Santos VP², Araújo MS², Buck HS³, Viel TA¹¹EACH-USP, ²UNIFESP – Bioquímica, ³FCMSCSP – Ciências Fisiológicas

02 053

Effects of isolation rearing on the expression of B-amyloid precursor proteins, isoforms 695 and 751/770, in rat hippocampus. Kerbauy LN¹, de Souza RG², Trindade LB¹, Sestito RS¹, Limonte FH², Iyomasa MM², Rosa ML² ¹FAMECA-FIPA – Bioquímica, ²FAMECA-FIPA Neurociências

02.054

Influence of glucocorticoids in the increase of CRF₂ mRNA levels in the lateral septal nucleus of rats submitted to chronic unpredictable stress. Malta MB¹, Sita LV², Silva JM², Bittencourt JC², Scavone C¹, Munhoz CD¹ ¹ICB-USP – Farmacologia, ²ICB-USP – Anatomia

02.055

Overactive bladder induced by spinal cord injury: implication of TRPA1 receptor. Andrade EL¹, Forner S¹, Bento AF¹, Leite DFP¹, Dias MA², Leal PC³, Koepp J⁴, Calixto JB¹ ¹UFSC – Farmacologia, ²ISCAL – Neurocirurgia, ³UFSC – Química, ⁴UFSC – Engenharia Química

02.056

Neonatal morphine exposure alters E-NTPDase activity and gene expression pattern in spinal cord and cerebral cortex of rats. Rozisky JR¹, Silva, RS², Adachi LNS¹, Bogo MR², Bonan CD², Torres ILS¹ ¹UFRGS – Farmacologia, ²PUCRS – Biologia Celular e Molecular

02.057

Fish oil prevents orofacial dyskinesia, memory loss and lipid peroxidation induced by haloperidol in rats. Bürger ME¹, Barcelos RCS², Benvegnú DM¹, Müller LG², Reckziegel P², Pase C², Emanuelli T³, Boufleur N² ¹UFSM – Farmacologia, ²UFSM – Fisiologia e Farmacologia, ³UFSM – Tecnologia dos Alimentos

03. Psychopharmacology

03.025

Nitric oxide modulates glutamatergic control of sensorimotor gating in rats. Henriques-Santos NF¹, Brosco MC¹, Del Bel EA², Salum C¹ ¹UFABC – Matemática, Computação e Cognição, ²FORP-USP – Morfologia, Estomatologia e Fisiologia

03.026

Effects of nNOS Inhibition on forced swimminginduced FOS expression in the rat brain. Silva M, Aguiar DC, Guimarães FS, Joca SRL FMRP-USP – Farmacologia

03.027

Antidepressant-like activity of *Hypericum* caprifoliatum Cham. & Schltdl (Guttifereae) is not due to NMDA receptor activation neither to neuronal glutamate transport. Centurião FB¹, Stein AC¹, Gay BM², Prigol M², Viana AF³, Nogueira CW², Rates SMK³ ¹UFRGS – Farmácia, ²UFSM – Química, ³UFRGS – Ciências Fisiológicas

03.028

Repeated morphine administration in early life promotes anxiolytic effect on elevated plus-maze. Nonose Y¹, Rozisky JR¹, Santos VS¹, Medeiros LF¹, Souza A², Caumo W³, Torres ILS¹ ¹UFRGS – Farmacologia, ²UFRGS – Bioquímica, ³UFRGS – Anestesia

03.029

Evaluation of intestinal motility tolerance after repeated diethylpropion administration in rats. Dalpra WL¹, Caletti, G¹, Olguins, DB², Barros HMT¹, Gomez, R¹ ¹UFCSPA – Farmacologia, ²IPA – Farmacologia

03.030

Blockade of glutamate NMDA receptors in the rat ventromedial prefrontal cortex (vMPFC) induces antidepressant-like effects. Pereira VS¹, Joca SRL²¹FMRP-USP – Farmacologia, ²FCFRP-USP – Física e Química

Ayahuasca repeated treatment inhibits behavioral sensitization previously developed to ethanol in mice. Marinho EAV1, Gerardi-Junior CA², Santos R³, Baldaia MA⁴, Oliveira-Lima AJ⁵, Wuo-Silva R⁶, Hollais AW⁷, Malpezzi-Marinho ELA^{2} , Fernandes HA^{8} , Frussa-Filho ¹UBC/UNIFESP Ciências da Saúde Farmacologia, ²UBC - Ciências da Saúde, ³UBC - Farmácia, ⁴UBC/UNIFESP - Farmacologia, ⁵UNIFESP - Farmacologia, ⁶UBC - Fisiologia

03 032

Acute effect of *Dioclea violacea* M. (aqueous extract) on general activity observed in the rats on elevated plusmaze and its dyskinetics movements. Gemignani S, Silva FO, Biscaro MDA, Santos NSS, Rassam E, Gonçalves RB, Pedroso-Mariani SR FMJ – Farmacologia

03.033

Role of L-arginine-nitric oxide pathway and possible implications for cardiovascular disease in depressed patients. Pinto VLM¹, Fontoura PCS¹, Brunini T², Mendes Ribeiro AC¹ ¹UERJ – Farmacologia e Psicobiologia, ²UERJ – Farmacologia

03.034

Chronic imipramine treatment enhances the panicolytic-like effect caused by the stimulation of 5-HT_{1A} and 5-HT_{2A} receptors in the dorsomedial hypothalamic nucleus. de Bortoli VC, Zangrossi Jr H FMRP-USP – Farmacologia

03.035

Bipolar disorder and cardiovascular disease. Fontoura PCS¹, Pinto VLM¹, Cheniaux Jr E², da Silva O¹, Brunini T³, Mendes Ribeiro AC¹ ¹UERJ – Farmacologia e Psicobiologia, ²IPUB-UFRJ – Psiquiatria, ³UERJ – Farmacologia

03.036

Memory impairment is associated with inflammatory changes in the hippocampus of DENV-3 infected mice. Campos RDL¹, Amaral DCG², Cisalpino D³, Vilela MC⁴, Rodrigues DH⁵, Miranda AS¹, Lacerda-Queiroz N⁵, Souza KPR³, Kroon EG³, Reis HJ⁶, Teixeira, AL² ¹UFMG – Bioquímica e Imunologia, ²UFMG – Clínica Médica, ³UFMG – Microbiologia, ⁴UFMG – Neurociências, ⁵UFMG – Biologia Celular, ⁶ICB-UFMG – Farmacologia

04. Inflammation

04.093

Pineal gland is instrumented to be an integral player of innate immune response. Carvalho-Sousa CE^1 , Cruz-Machado SS^1 , Fernandes PACM 1 , Tamura EK^1 , Pinato, L^2 , Petrilli CL^1 , Markus RP^1 1IB -USP – Fisiologia, 2UNESP – Fonoaudiologia

04.094

The intestinal ischemia/reperfusion in rats promotes changes in the lung depending on the time of reperfusion. Vitoretti LB, Breithaupt-Faloppa AC, Gimenes-Junior JA, Domingos HV, Sudo-Hayashi LS, Oliveira-Filho RM, Tavares de Lima W ICB-USP – Pharmacology

04.095

Saccharomyces boulardii prevents the inflammatory response in intestinal mucositis induced by 5-fluorouracil in mice. Justino PFC¹, Silva LMN¹, Melo LFM¹, Costa JVG¹, Nogueira AF¹, Ribeiro RA¹, Souza MHLP¹, Soares PMG² ¹UFC – Fisiologia e Farmacologia, ²UFC – Morfologia

04.096

Effect of protease-activated receptor-2 activating peptide on B1 cell spreading and its modulation by the C-terminus of the calcium binding protein S100A9. Moraes NF¹, Sampaio SC¹, Freitas JD¹, Pagano RL², Giorgi R¹ ¹IBu – Fisiopatologia, ²IEP – Neuromodulação e Dor Experimental

04.097

Effects of the treatment with an inhibitor of CCL2 synthesis, in acute diet-induced adiposity in mice. Lima RL¹, Menezes Z¹, Santos MCC¹, Guglielmotti A², Teixeira MM³, Ferreira AVM⁴, Souza DG¹ ¹UFMG – Microbiologia, ²ACRAF – Pharmacology, ³UFMG – Imunofarmacologia, ⁴UFMG – Enfermagem Básica

04.098

Hydrogen sulfide and antioxidant enzyme activities in allergic mice lungs. Campos D¹, Benetti LR¹, Nogueira JS¹, Gurgueira SA², Vercesi AE³, Ferreira HHA¹¹USF – Inflamação, ²FCM-UNICAMP – Bioenergética, ³FCM-UNICAMP – Patologia Clínica

04.099

Expression of adhesion molecules in vessels of the microcirculation affected by different metalloproteases isolated from *Bothrops* venoms. Zychar BC¹, Baldo C², Clissa, PB², Alves AS³, Britto LRG³ ¹IBu – Fisiopatologia, ²IBu – Imunopatologia, ³USP – Fisiologia e Biofisica

04.100

Effects of the cystein proteinase obtained from *C. candamarcensis* P1G10-treatment on eosinophil recruitment in allergic mice pleurisy. Miwa MY¹, Lopes MTP¹, Ferreira RG², Gomides LF¹, Salas CE³, Klein A² ¹UFMG – Farmacologia, ²UFMG – Fisiologia/Farmacologia, ³UFMG – Bioquímica e Imunologia

04.101

Aprotinin potentiates carrageneen edema formation: evidences for prostaglandin participation. Ferreira RG¹, Godin AM², Matsui TC³, Coelho MM⁴, Klein A³ ¹UFMG – Fisiologia/Farmacologia, ²FF-UFMG – Produtos Farmacêuticos, ³UFMG – Farmacologia, ⁴UFMG

Methotrexate effects on systemic and adipose tissue alterations induced by obesity in mice. De Oliveira CC, Acedo SC, Gotardo EMF, Gambero A USF – Farmacologia e Gastroenterologia

04.103

Crohn's experimental model decreased the mechanical inflammatory hypernoception in rats- role of NO/cGMP/ KATP pathway. Barbosa ALR¹, Sousa RB², Torres JNL², Lucetti LT², Cunha, TM³, Cunha FQ³, Ribeiro RA², Vale ML², Souza MHLP² ¹UFPI – Fisiologia e Farmacologia / UFC, ²UFC – Fisiologia e Farmacologia, ³FMRP-USP

04.104

Effects of hydrogen sulfide on leukocyte migration and protein tyrosine nitration in airways of allergic mice. Benetti LR¹, Teixeira SA², Campos D³, Silva AA³, Costa SKP², Muscará MN², Ferreira HHA³ ¹USF – Farmacologia, ²USP – Farmacologia, ³USF – Inflamação

04.105

Characterization of allergic lung inflammation in genetically obese mice. Lintomen L, Calixto MC, Schenka A, Antunes E UNICAMP – Farmacologia

04.106

Mycobacterium bovis BCG infection activates a rapamycin-sensitive mTOR pathway: involvement in the lipid body formation and inflammatory response. D´Ávila H¹, Lage SL², Roque NR³, Maya-Monteiro CM³, Almeida PE³, Melo RCN⁴, Castro-Faria-Neto HC³, Bozza PT³¹UFJF – Biologia Celular, ²USP – Imunologia, ³FIOCRUZ – Imunofarmacologia, ⁴FIOCRUZ – Biologia Celular

04.107

Contribution of reactive-oxygen species to the enhancement of platelet aggregation in high-fat fed rats. Monteiro PF¹, Prada Morganti R¹, Delbin MA², Pires MEL¹, Priviero FBM¹, Marcondes S¹, Zanesco A², Antunes E¹¹UNICAMP – Farmacologia, ²UNESP – Educação Física

04.108

Staphylococcal enterotoxin A (SEA) inhibits human eosinophil migration *in vitro*. Mello GC, Squebola Cola DM, Souza IA, Antunes E FCM-UNICAMP – Farmacologia

04.109

Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Magalhães MS¹, Moraes MEA¹, Fechine FV¹, Nascimento DF¹, Macedo RN¹, Monteiro DLS², Oliveira CC¹, Linhares JH³, Leite ALAS¹, Moraes MO¹¹UFC – Fisiologia e Farmacologia, ²FAMED-UFC – Fisiologia e Farmacologia, ³UFC – Cirurgia

04.110

Leukotriene B4 mediates γδ T lymphocyte migration in response to diverse stimuli. Souza-Martins R¹, Costa MFS¹, Souza M¹, Piva B¹, Diaz BL³, Peters-Golden M⁴, Henriques MGMO¹, Canetti C¹, Penido C¹ ¹Farmanguinhos-FIOCRUZ – Farmacologia Aplicada, ²IBCCF-UFRJ, ³IBCCF-UFRJ – Imunobiologia, ⁴University of Michigan – Pulmonary and Critical Care Medicine

04.111

Adhesion molecules and chemokines receptor expression in bone marrow eosinophils of obese mice. Calixto MC 1 , Lintomen L 1 , Thomé R 2 , Tamashiro WMSC 2 , Antunes E 2 1 UNICAMP – Farmacologia, 2 UNICAMP – Imunologia e Microbiologia

04.112

Antinociceptive and anti-inflammatory effect of heme oxygenase-1 / biliverdin / carbon monoxide pathways in temporomandibular joint arthritis induced by zymosan. Chaves HV¹, Filgueira AA², Ribeiro KA³, Silva AAR², Souza MHLP⁴, Ribeiro RA⁴, Bezerra MM⁵, Brito GAC⁶¹UFC - Ciências Médicas, ²UFC-Sobral - Odontologia, ³UVA - Biologia, ⁴UFC - Fisiologia e Farmacologia, ⁵UFC-Sobral - Medicina, ⁶UFC - Morfologia

04.113

Antipruritic activity of the ethanol extract from *Lecythis pisonis* Camb. (Lecythidaceae) leaves in mice. Silva LL¹, Gomes BS¹, Silva AMS¹, Oliveira JPC², Chaves MH², Oliveira FA¹ ¹UFPI – NPPM, ²UFPI – Química

04.114

Effects of acute treatment with 1-(3-chlorophenyl) piperazine (mCPP) in the leukocyte traffic in rats. Lombardi L, Hebeda CB, Farsky S, Moreau RLM USP – Análises Clínicas e Toxicológicas

04.115

Lipoxin A4 plays a protective role in experimental dengue disease. Cisalpino D¹, Fagundes CT², Costa VV², Guabiraba R², Souza DG¹, Teixeira MM² ¹UFMG – Microbiologia, ²UFMG – Bioquímica e Imunologia

04.116

Lipopolysaccharide *in vivo* increases the production of reactive oxygen species in rat platelet mainly through activation of NADPH-oxidase system. Pires MEL, Cardelli NJA, Anhê GF, Antunes E, Marcondes S UNICAMP – Farmacologia

04.117

Synthesis and evaluation of activity of 4-antihipernociceptiva aminochalconas. Sonza DR, Buzzi FC, Rodrigues C, Corrêa R, Souza PS, Quintão NLM ¹NIQFAR-UNIVALI – Farmacêuticas

Mechanisms of the inflammatory response induced by topical application of cinnamaldehyde in mice. Silva CR¹, Oliveira SM¹, Rossato MF¹, Guerra GP¹, Dalmolin GD², Prudente AS³, Cabrini DA³, Otuki MF³, Ferreira J¹ ¹UFSM – Química, ²UFMG – Farmacologia, ³UFPR – Farmacologia

04.119

IFN-g limits antigen-induced arthritis severity by inducing IDO/GCN2 kinase pathway. Lemos HP¹, Mellor AL², Chandler PR³, Vieira SM⁴, Grespan R⁵, Cunha FQ¹ ¹FMRP-USP – Farmacologia, ²Medical College of Georgia – Molecular Medicine and Genetics, ³Medical College of Georgia – Immunotherapy, ⁴COPE-INPA, ⁵UEM – Farmácia e Farmacologia

04.120

IL-1 receptor antagonist (IL-1RA) Prevents hemorrhage, inflammation, nociception and bladder dysfunction in ifosfamide-induced hemorrhagic cystitis. Leite CAVG¹, Alencar VTL¹, Lima-Júnior RCP¹, Mourão LTC¹, Wong DVT¹, Melo DLR¹, Magalhães PJC¹, Santos AA¹, Brito GAC², Cunha FQ³, Ribeiro RA¹ ¹UFC – Fisiologia e Farmacologia, ²UFC – Morfologia, ³FMRP-USP

04 121

Involvement of nitric oxide on the pathogenesis of irinotecan-induced intestinal mucositis: role of cytokines on inducible nitric oxide synthase activation. Leite CAVG¹, Lima-Júnior RCP¹, Wong DVT¹, Oriá RB², Brito GAC², Souza MHLP¹, Cunha FQ³, Ribeiro RA¹ ¹UFC – Fisiologia e Farmacologia, ²UFC – Morfologia, ³FMRP-USP

04.122

IL-6/ IL-23/ IL-17/ IL-22 axis mediates the inflammatory response in antigen-induced arthritis in mice. Pinto LG^1 , Talbot J^1 , Vieira SM^2 , Verri Jr WA³, Cunha, TM^1 , Cunha FQ^1 , Ferreira SH^1 1FMRP -USP – Farmacologia, 2COPE -INPA, 3UEL – Pathology and Pharmacology

04.123

Nitric oxide, carbon moxide and guanylate cyclase modulate remote ischemic preconditioning: participation of adhesion molecules in inhibition of neutrophils migration. Simão AFL¹, Souza-Filho MVP², Souto FO³, Simão AAL⁴, Cunha FQ⁵, Ribeiro RA⁵ ¹UFC − Fisiologia e Farmacologia, ²UFC − Cirurgia, ³FMRP-USP − Surgery and Anatomy, ⁴UFC − Farmacologia, ⁵FMRP-USP

04.124

Lipid droplet in pulmonary dendritic cells during severe sepsis. Molinaro RC¹, Vieira-de-Abreu A¹, Silva AR¹, Castro-Faria-Neto HC¹, Benjamim CF², Bozza PT¹ ¹DFF-FIOCRUZ, ²UFRJ – Farmacologia Básica e Clínica

04.125

Intraperitonial injection of *S. aureus* induces fever accompanied by an increase of prostaglandin E2 (PGE2) in the CSF and hypothalamus in rats. Martins JM¹, Soares DM², Malvar DC¹, Figueiredo MJ¹, Souza GEP² ¹FMRP-USP – Farmacologia, ²FCFRP-USP – Física e Química

04.126

Reduction of the expression of membrane CXCR2 and BLT1 receptors on neutrophils related to increased mortality of septic patients in emergency department. Sousa RB¹, Souto FO², Spiller F², Turato W³, Lobo RR¹, Mendonça PR¹, Cunha FQ², Pazin A¹¹FMRP-USP – Clínica Médica, ²FMRP-USP – Pharmacology, ³FCFRP-USP – Análises Clínicas, Toxicológicas e Bromatológicas

04.127

JM 25-1, a non anesthetic lidocaine derivative, decreased the expression of transcription factor GATA-3 in a murine model of acute allergic inflammation. Couto GC¹, Serra MF¹, Cotias AC¹, Anjos-Valotta EA², Jurgilas PB¹, Ferreira TPT¹, Costa JCS¹, Pires ALA¹, Cordeiro RSB¹, Silva PMR¹, Martins MA¹ ¹IOC-FIOCRUZ – Fisiologia e Farmacodinâmica, ²ICB-USP

04.128

Lidocaine inhibits airway inflammation, peribronchial fibrosis and mucus production in a murine model of asthma. Serra MF¹, Cotias AC¹, Anjos-Valotta EA², Couto GC¹, Pão CRR¹, Jurgilas PB¹, Ferreira TPT¹, Pires ALA¹, Arantes ACS¹, Cordeiro RSB¹, Silva PMR¹, Martins MA¹ FIOCRUZ – Fisiologia e Farmacodinâmica, ²ICB-USP

04.129

Role of arylhidrocarbon Receptor (AhR) in antigen-induced arthritis. Talbot J¹, Pinto LG¹, Alves-Filho JC², Vieira SM³, Ferreira SH¹, Cunha TM¹, Louzada Jr P⁴, Cunha FQ¹ ¹FMRP-USP – Farmacologia, ²University of Glasgow – Immunology, Infection and Inflammation, ³COPE-INPA, ⁴FMRP-USP – Clínica Médica

04.130

Chemokine decoy receptor D6 deficiency protects against bleomycin-induced pulmonary inflammation and fibrosis in mice. Russo RC¹, Savino B¹, Mirolo M¹, Buracchi C², Anselmo A², Zammataro L², Pasqualini F², Germano G², Nebuloni M³, Mantovani A³, Teixeira MM¹, Locati M² ¹UFMG – Bioquímica e Imunologia, ²Istituto Clinico Humanitas, Leukocyte Biology, ³University of Milan – Pathology

04.131

Early-lifetime exposure to 1,2-naphthoquinone (1,2-NQ) interact to increase asthma susceptibility and behavior changes in juvenile mice. Florenzano J, Santos KT, Teixeira SA,

Barreto MAA, Muscará MN, Camarini R, Costa SKP ICB-USP - Farmacologia

04.132

Pharmacological blockade of the CXCL-ELR+chemokine / receptor cxcr2 axis accelerates wound closure in mice. Castro TBR¹, Canesso MCC¹, Almeida BG¹, Colotta F², Bertini R², Proudfoot AEI³, Andrade SP¹, Teixeira MM⁴, Barcelos L¹ ¹ICB-UFMG – Physiology and Biophysics, ²Dompé Research and Development, ³Serono Pharmaceutical Research Institute, ⁴ICB-UFMG – Biochemistry and Immunology

04.133

Absence of P2X₇ purinergic receptors in the hemorrhagic cystitis induced by cyclophosphamide in mice. Martins JP¹, Silva RBM², Santos Jr AA³, Coutinho R⁴, Battastini AMO⁵, Santos DS⁶, Morrone FB⁶, Campos MM⁻¹PUCRS - Medicina, ²PUCRS - Farmacologia Aplicada, ³INCTb-PUCRS - Biologia Molecular e Funcional, ⁴IBCCF-UFRJ, ⁵UFRGS - Bioquímica, ⁶PUCRS - Farmácia, ¬PUCRS - Cirurgia-Odontologia

04.134

Characterization of the inflammatory process in epididymal fat tissues in mice submitted to a palatable diet. Bernardes PTT¹, Rezende B², Castor MGM³, Ferreira AVM⁴, Teixeira MM⁵, Pinho V⁵ ¹UFMG – Morfologia e Bioquímica, ²UFMG – Bioquímica e Imunologia e Morfologia, ³UFMG – Fisiologia e Farmacologia, ⁴UFMG – Fisiologia e Biofísica, ⁵UFMG – Bioquímica e Imunologia

04.135

In vitro-differentiated mouse eosinophils as a new tool for the study of eosinophil biology. Samico RF¹, Luna-Gomes T¹, Mesquita-Santos FP², Bakker-Abreu I¹, Diaz BL³, Bandeira-Melo C² ¹IBCCF-UFRJ, ²FIOCRUZ – Fisiologia e Farmacodinâmica, ³IBCCF-UFRJ – Imunobiologia

04 136

Behavioral changes are associated with central nervous system inflammation in an experimental model of malaria. Miranda AS¹, Lacerda-Queiroz N², Vilela MC³, Rodrigues DH², Reis HJ⁴, Teixeira MM¹, Rachid M⁶, Teixeira, AL⁷ ¹UFMG – Bioquímica e Imunologia, ²UFMG – Biologia Celular, ³UFMG – Neurociências, ⁴UFMG – Farmacologia, ⁶UFMG – Patologia, ⁷UFMG – Clínica Médica

04.137

Hydrogen Peroxide is associated to neutrophil clearance in model of arthritis induced in mice. Lopes F¹, Sousa LP², Coelho FM³, Costa VV³, Gonçalves W¹, Teixeira MM³, Pinho V³ ¹UFMG – Morfologia, ²UFMG – Patologia Clínica e Bioquímica e Imunologia, ³UFMG – Bioquímica e Imunologia

04.138

Role of transient receptor potential vanilloid 4 (TRPV4) in joint inflammation. Denadai-Souza A¹, Vergnolle N², Martin L², Muscará MN¹, Cenac N² ¹ICB-USP – Pharmacology, ²INSERM

05. Pain and Nociception

05 053

Evaluation of the antinociceptive profile of a series of *N*-acylhydrazones derivatives modified from the prototype LASSBio-294. Veloso RR, Nogueira MCO, Maia RC, Lima ML, Barreiro EJ, Miranda ALP FF-UFRJ- LASSBio

05.054

Effects of methysergide injected into the anterior pretectal nucleus on the stimulation-induced antinociception from the retrosplenial cortex. Rossaneis AC, Reis GM, Prado WA FMRP USP – Farmacologia

05.055

Crotalphine induces a long-lasting and opioid-mediated antinociceptive effect in an experimental model of bone cancer pain. Gutierrez VP², Brigatte P¹, Zambelli VO², Carvalho JS², Picolo G², Radin A³, Marques FLN³, Cury Y² ¹CEIS-UNESP, ²IBu – Pain and Signaling, ³FM-USP – Oncology

05.056

Aspirin-triggered resolvin d1, AT-RVD1, and its precursor, possess anti-hyperalgesic properties in a model of arthritis in rats. Lima-Garcia JF¹, Motta EM¹, Campos MM², Calixto JB¹ ¹UFSC – Farmacologia, ²PUCRS – Cirurgia-Odontologia

05 057

Endothelin-1 induces both itch and pain in the mouse cheek. Oliveira L, Hara DB, Rae GA UFSC – Farmacologia

05.058

The involvement of the transient receptor potential A1 (TRPA1) on norepinephrine-induced nociception in neuropathic mice. Pinheiro FV¹, Silva CR², Oliveira SM², Villarinho JG³, Andre E³, Ferreira J² ¹UFSM – Fisiologia e Farmacologia, ²UFSM – Química, ³UFRN – Biofisica e Farmacologia

05.059

Peripheral antinociceptive effect of inosine depends of the A1 adenosine receptor but not of receptors A2A and A3. Cerutti ML¹, Nascimento FP², Macedo Junior SJ¹, Santos ARS¹ ¹UFSC – Ciências Fisiológicas, ²UFSC – Farmacologia

05 060

Analgesic effects of ethanolic extract from *Sinningia aggregata* tubers and from the isolated compound 3-prenyl-4-oxo-3´-methylnaphtho [1,2b] oxepin-1,3´(4H)-diol. Simas AS¹, Verdan ML², Kassuya CAL³, Stefanello MEA², Zampronio AR¹ ¹UFPR - Farmacologia, ²UFPR - Química, ³UFGD - Ciências da Saúde

Cytokines and chemokines participate in the genesis of post-incisional pain. Carreira EU, Cunha FQ, Ferreira SH, Cunha TM FMRP-USP – Farmacologia

05.062

Effect of Oligopeptidases B from *Trypanosoma cruzi and Trypanosoma brucei* in an experimental model of pain in mice. Abrahão RQ¹, Juliano MA², Juliano L², Giorgi R³, Dale CS⁴ ¹UNIFESP – Biofísica, ²UNIFESP – Farmacologia, ³IBu – Fisiopatologia, ⁴IEP-HSL

05.063

Central antinociceptive effects of ethanolic extract from the bark of *Pithecellobium cochliocarpum* on mice. Souza IA¹, Jesus RPFS², Bastos IVGA², Rodrigues GCR² ¹UFPE – Antibióticos

05.064

Role of NMDA receptors in carrageenin-induced hypernociception in rat temporomandibular joint: magnesium chloride modulator effect. Cavalcante ALC¹, Siqueira RMP², Colares MT¹, Chaves HV¹, Vale ML² ¹UFC – Ciências Médicas, ²UFC – Fisiologia e Farmacologia

05.065

Involvement of B1 and B2 kinin receptors in painful neuropathy induced by paclitaxel in mice Tamiozzo LLR¹, Dalmolin GD², Rigo FK², Ferreira J¹ ¹UFSM – Química, 2 UFMG – Farmacologia

05.066

Mechanism of peripheral antinociceptive effect of $15D\text{-PGJ}_2$ on rheumatoid arthritis into the TMJ of rats. Quinteiro MS¹, Napimoga MH², Clemente-Napimoga JT¹ ¹UNIUBE – Biologia Molecular, $^2\text{UNIUBE}$ – Biologia Celular e Molecular

05.067

Involvement of kinin receptors in pronociceptive action of dynorphin A (1-17) in a mouse model of orofacial neuropathy. Schroeder SD¹, Luiz AP², Chichorro JG³, Rae GA¹ ¹UFSC – Farmacologia, ²UFSC – Ciências Fisiológicas, ³UFPR – Farmacologia

05.068

Analgesic effect of a novel allosteric antagonist of C5a receptors. Carneiro VL¹, Bertini R², Cunha FQ¹, Ferreira SH¹, Teixeira MM⁵ ¹FMRP-USP – Farmacologia, ²Dompé Research and Development

05.069

Hyponociceptive effect of H1 and H2 receptors in a model of articular inflammation induced by formalin. Souza-Silva E, Mascarin LZ, Eto C, Oliveira D, Tonussi CR UFSC – Farmacologia

05.070

Role of nitric oxide in nociception, edema and plasma leakage induced by intra-articular

formalin. Eto C, Souza-Silva E, Mascarin LZ, Tonussi CR UFSC – Farmacologia

05.071

Cafestol evokes peripheral antinociception via activation of α_{2C} adrenoceptors. Guzzo LS, Perez AC, Duarte IDG UFMG – Farmacologia

05.072

Antinociceptive and anti-inflammatory activity of ethanol extract of *Polygala sabulosa* in mice. Borges FR, Pierosan L, Silva MD, Córdova MM, Santos ARS CFS-UFSC

05 073

Visceral antinociceptive effect of HC-030031, an antagonist of TRPA1 ion channel, is independent of inflammatory cells and nitric oxide. Pereira LMS¹, Sá LG¹, Wong DVT¹, Callado RB¹, Teixeira CCG¹, Bem AXC¹, Larsen GR², Lima-Júnior RCP¹, Ribeiro RA¹ ¹UFC – Fisiologia e Farmacologia, ²Hydra Biosciences Biopharmaceutical Co – Biopharmacology

05.074

Synthesis and evaluation of antihyperalgesic activity of benzofuranone derived of xanthoxylin: hypothesis of the possible mechanism of action. Souza JP¹, Quintão NLM¹, Sonza DR², De Campos-Buzzi F², Niero R² ¹UNIVALI – Ciências Farmacêuticas, ²NIQFAR-CCS-UNIVALI

05.075

Evaluation of antinociceptive spinal activity of TX3-4, a toxin peptide purified from the spider *Phoneutria nigriventer* venom, in mice. Silva JF¹, Fontanini CEM², Lavor, MSL³, de Souza AH⁴, Pessoa FLC², Pinheiro ACN⁴, Binda NS⁴, Ferreira J⁵, Gomez MV⁴ ¹UFMG – Farmacologia Bioquímica e Molecular, ²UFMG – Medicina, ³UFMG – Clínica e Cirúrgica Veterinária, ⁴UFMG – Farmacologia, ⁵UFSM – Química

05.076

Is there an involvement of endocannabinoid system in the peripheral antinociception of NSAID? Resende LC, Duarte IDG UFMG – Farmacologia

05.077

Antinociceptive effect of Riparin II in mice. Carvalho AMR¹, Leite CP¹, Moura BA³, Vasconcelos LF¹, Melo TV¹, Bastos MVR¹, Barbosa Filho JM², Sousa FCF² ¹UFC – Fisiologia e Farmacologia, ²UFPB – Tecnologia Farmacêutica

05.078

Crotalphine reduces peripheral sensitization evoked by activation of TRPV1 receptor in mice. Motta EM¹, Machado FC², Gutierrez VP², Lira², Gandra², Picolo G³, Cury Y³ ¹UFSC – Dor e Sinalização, ²IBu – Dor e Sinalização, ³IBu – Laboratório de Fisiopatologia

Evidence for the Involvement of kinin B_1 and B_2 receptors in the neuropathic pain-like behavior after treatment with paclitaxel in mice. Motta EM^1 , Costa R^2 , Manjavachi MN^3 , Dutra RC^2 , Pesquero JB^3 , Calixto JB^2 1UFSC – Dor e Sinalização, 2UFSC – Farmacologia, 3UNIFESP – Biofísica

06. Cardiovascular and Renal Pharmacology

06.053

Study of the cytotoxic effect of *Bothrops pauloensis* on MDCK cells. Jorge RJB¹, Marinho AD², Barbosa JPC³, Abreu ML¹, Morais ICO¹, Menezes RRPPB⁴, Lima Filho CF⁵, Pessoa AWP⁶, Santos LFL⁶, Alves CD³, Toyama MH², Martins AMC⁴, Evangelista JSAM⁶, Monteiro HSA¹, Moraes GB⁶ ¹UFC – Fisiologia e Farmacologia, ²UFC – Farmácia, ³UNIFOR – Fisiologia e Farmacologia, ⁴UFC – Análises Clínicas e Toxicológicas, ⁵UECE – Ciências Fisiológicas, 6UECE – Veterinária, 7IB-UNICAMP

06 054

Important changes in hematologic and cardiovascular parameters produced by chronic treatment with etoricoxib in normotensive and spontaneously hypertensive rats. Baracho NCV FMIT – Farmacologia e Bioquímica

06.055

Hypotensive and diuretic effect of *Achillea millefolium* L. (Asteraceae) in rats. de Souza P¹, Gasparotto Junior A², Boffo MA³, Lourenço EL⁴, Stefanello MEA⁵, Marques MCA¹, da Silva-Santos JE⁶, Kassuya CAL⁷ ¹UFPR – Farmacologia, ²UNIPAR/UFPR – Farmacologia, ³UNIPAR – Farmacologia, ⁴USP – Toxicologia e Análises Toxicológicas., ⁵UFPR – Química, ⁶UFPA – Farmacologia Experimental e Pré-clínica, ⁷UFGD – Ciências da Saúde

06.056

Involvement of L-arginine/NO pathway on the vascular adaptive response of high fat-diet rats exposed or not to chronic stress. Bruder-Nascimento T⁷, Campos DHJ², Cicogna AC², Cordellini S¹ ¹UNESP – Farmacologia, ²UNESP – Clínica Médica

06.057

Comparative study of effects hemodynamic of diabetic cardiomyopathy is induced by L-name in rats. Gazzoto AF¹, Pereira DJ¹, Pires NF¹, Moreira MM², Santos RC¹, Figueiredo VN², Renno AL³, Quinaglia TSS², Ludovico ND², Moreno Junior H⁴¹UNICAMP – Farmacologia, ²UNICAMP – Farmacologia cardiovascular, ³UNICAMP – Farmacologia Bioquímica, ⁴UNICAMP

06.058

Effect of potassium-sparing diuretics on rat corpus cavernosum smooth muscle reactivity. Claudino MA¹, Silva FH¹, Franco-Penteado CF², Takeshi FI¹, Lopes AG³, Antunes E¹, Nucci G¹

¹UNICAMP – Pharmacology, ²UNICAMP Hemocentro, ³IBCCF-UFRJ – Fisiologia Renal

06.059

Cytotoxic effect of *Bothrops pirajai* on MDCK cells. Marinho AD¹, Jorge RJB², Barbosa JPC³, Abreu ML³, Rocha VHP¹, Morais ICO², Menezes RRPPB⁴, Morais GB⁵, Sampaio AM®, Alves RS², Jorge ARC², Ximenes RM², Toyama MH⁶, Martins AMC⁴, Evangelista JSAM³, Monteiro HSA² ¹UFC – Farmácia, ²UFC – Fisiologia e Farmacologia, ³UNIFOR – Fisiologia e Farmacologia, ⁴UFC – Análises Clínicas e Toxicológicas, ⁵UECE – Faculdade de Veterinária, ⁶UNICAMP – Instituto de Biologia

06.060

Inhibition of MMP decreases mortality and right ventricular damage caused by acute pulmonary embolism in rats. Cau SBA¹, Barato RC¹, Gerlach RF², Tanus-Santos JE¹ – ¹FMRP-USP – Farmacologia, ²FORP-USP – Morfologia

06 061

Angiotensin (1-12) metabolism in cardiac perfusate of Wistar and spontaneously hypertensive rats. Becari C¹, Pereira HJV², Mesquita Jr O¹, Oliveira EB¹, Salgado MCO¹ ¹FMRP-USP – Pharmacology, ²FMRP-USP – Biochemistry and Immunology

06.062

Impaired Rho-A/Rho-kinase pathway contributes to vascular dysfunction in endotoxemic mouse. Corrêa T, da Silva-Santos JE UFSC – Farmacologia

06.063

Protein Disulfide Isomerase regulation of NADPH oxidase activity in vascular smooth muscle cells: effects on Angiotensin II redox signaling in hypertension. Camargo LL¹, Androwiki ACD¹, Ceravolo GS¹, Denadai-Souza A¹, Muscará MN¹, Carvalho MHC¹, Fortes ZB¹, Janiszewski M², Lopes LR¹ ¹USP – Farmacologia, ²Hospital Israelita Albert Einstein – IEP

06.064

Endothelium potentiates vasodilator effect of nitric oxide donor with gold nanoparticles in aortas from normotensive but not from renal hypertensive rats. Silva BR¹, Vercesi J. A², Moraes JB², Silva RS², Bendhack LM² ¹FMRP-USP – Farmacologia, ²FCFRP-USP – Física e Química

06.065

Vascular response in acute lung injury induced by paraquat. Aires RD¹, Capettini LSA¹, Pinho JF², Côrtes SF³, Pinho V⁴, Lemos VS¹ ¹UFMG – Fisiologia e Biofisica, ²UFMG – Fisiologia e Farmacologia, ³UFMG – Farmacologia, ⁴UFMG – Bioquímica e Imunologia

06.066

Expression of protein disulfide isomerase is associated with increased reactive oxygen

species generation in target organs in hypertension: possible interaction with NADPH oxidase. Androwiki ACD¹, Camargo LL¹, Dias AA¹, Janiszewski M², Lopes LR¹ ¹ICB-USP – Farmacologia, ²Hospital Israelita Albert Einstein – IEP

06.067

Comparison of the action mechanisms of sodium nitroprusside and $[Ru(terpy)(bdq)NO^+]^{3+}$ in normotensive and hypertensive rats (SHR). Munhoz, FC¹, Pereira AC², Bonaventura D², Bendhack LM², Antoniali C¹ ¹FOA-UNESP – Ciências Básicas, ²FCFRP-USP – Física e Química

06.068

Protein disulfide isomerase regulates reactive oxygen species generation and vascular reactivity to angiotensin II in rat aorta. Dias AA¹, Camargo LL², Ceravolo GS¹, Androwiki ACD¹, Carvalho, MHC¹, Laurindo FRM², Janiszewski M³, Lopes LR' ¹ICB-USP – Farmacologia, ²InCor-HC-FMUSP, ³Hospital Israelita Albert Einstein – IEP

06.069

Pharmacological characterization of the contractile response of the dorsal penile vein Carioletti GH¹, Linder AE² ¹UFSC – Farmacologia, Centro de ciências Biológicas, ²UFSC – Farmacologia

06.070

The contribution of endothelial factors to serotonin-induced contraction in the rat jugular vein. Costa EB, Linder AE ¹UFSC – Farmacologia

06.071

Hypothalamic obese and non-obese rats express a similar functional muscarinic M_3 subtype in the conductance artery. Scolaro LL^1 , Oliveira JC^2 , Ambiel CR^3 , Mathias PC^2 , Alves-do-Prado W^1 1UEM – Farmacologia, 2UEM – Biologia Celular e Genética, 3UEM – Ciências Fisiológicas

06.072

Phenylephrine relaxes rat jugular vein. De Prá MA, Linder AE UFSC – Farmacologia

06.073

Blood renin activity and vasoactive peptides concentrations in rats with different angiotensin I converting enzyme (ACE) phenotypes. Peixoto HS, da Silva RM, Tanae MM, Souccar C, Lapa AJ, Lima-Landman MTR UNIFESP – Farmacologia

06.074

Atorvastatin seems inhibit the MMP-9 expression more pronouncedly than sinvastatin in human endothelial cell culture. Izidoro-Toledo TC¹, Guimarães DA¹, Gerlach RF², Tanus-Santos JE¹¹FMRP-USP – Pharmacology, ²FORP-USP – Morphology

06.075

Hydrogen sulfide improves vascular hyporesponsiveness and survival in severe polymicrobial sepsis in mice. Balsanelli LS, Dal-Secco D, Assreuy J UFSC – Farmacologia

06.076

Changes in rat's vascular reactivity in response to neonatal induced hyperleptinaemia. Motta NAV¹, Marques EB¹, Louback LS², Miranda ALP², Scaramello C¹, Brito FCF¹ – ¹UFF – Fisiologia e Farmacologia, ²FF-UFRJ – LASSBio

06.077

Temporal evaluation of 2K1C model of renovascular hypertension: metalloproteinases and oxidative stress. Ceron CS¹, Rizzi E¹, Oliveira AM³, Guimarães DA¹, Cau SBA¹, Marçal DMO¹, Gerlach RF¹, Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²FORP-USP – Morfologia

06.078

Evaluation of cilostazol effects in hypercholesterolemic diet fed rats. Motta NAV¹, Canal PF¹, Amorim LEO¹, Reis RC¹, Miranda ALP², Brito FCF¹ – ¹UFF – Fisiologia e Farmacologia, ²FF-UFRJ – LASSBio

06.079

Cardiovascular and neuroendocrine changes after blood volume expansion with hydroxyethyl starch 450/0.7 during experimental septic shock induced by cecal ligation and perforation (CLP). Santiago MB¹, Andrade CAF¹, Antunes-Rodrigues J², Giusti-Paiva A¹ ¹UNIFAL – Ciências Biológicas, ²FMRP-USP – Fisiologia

06.080

Pharmacological characterization of a new steroidal cardiotonic isolated from *Physalis angulata* leafs. Gomes VM¹, Pessoa ODL², Santos CF³, Fonteles MC⁴, Lessa LMA⁵, Nascimento NRF⁶ ¹UECE – Fisiologia, ²UFC – Química Orgânica, ³UECE – Medicina, ⁴Mackenzie – Fisiologia e Farmacologia, ⁵ISCB-UECE, ⁶UECE – Medicina Veterinária

06.081

Blood arterial pressure and vasoactive peptides concentration after nephrectomy in rats with different ace phenotypes. da Silva RM, Tanae MM, Peixoto HS, Souccar C, Lapa AJ, Lima-Landman MTR UNIFESP – Farmacologia

06.082

Cardiovascular responses to bothropstoxin. Rodrigues MAP, Dias L, Smaal A, Rennó AL, da Silva DA, Lorenzetti R, Hyslop S, Hyslop S UNICAMP – Farmacologia

06.083

Cardiovascular alterations caused by *Bothrops alternatus* snake venom in anesthetized dogs. Rodrigues MAP¹, Dias L¹, Smaal A¹, Rennó AL¹, Moreno Junior H², Mello SM³, Hyslop S¹ UNICAMP – Farmacologia, ²UNICAMP, ³UNICAMP – Controle de Intoxicações

The participation of AT_1 receptor in the Ang II-increased contraction in the contralateral carotid artery after balloon catheter injury. Olivon VC^1 , Mestriner FL^2 , Cunha FQ^2 , de Oliveira AM^1 1FCF -USP – Física e Química, 2FMRP -USP

06.085

Renin inhibition with aliskiren did not prevent the vascular remodeling found in 2K1C hypertension. Oliveira AM¹, Castro MM¹, Marçal DMO¹, Rizzi E¹, Ceron CS¹, Guimarães DA¹, Gerlach RF², Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²FORP-USP – Morfologia

06.086

Renal cyclooxygenase expression in rats treated with *Bothrops alternatus* venom. Rennó AL¹, Penteado CF², Linardi A¹, Hyslop S¹ ¹UNICAMP – Farmacologia, ²UNICAMP – Hemocentro

06.087

Effects of high-fat diet during six week on biochemical parameters and arterial blood pressure of Wistar rats. Milet-Morais MM¹, Silva OA¹, Figueiredo TG², Guedes GS², Xavier FE³, Rabelo LA², Pinto Duarte G¹ ¹UFPE – Fisiologia e Farmacologia, ²UFAL – Fisiologia e Farmacologia, ³UFES – Fisiologia

06.088

Cardiovascular effects produced by chronic treatment with L-arginine in hypertensive rats. Baracho NCV¹, Silva GF², Bernardes DSV¹, Oliveira RCS¹ ¹FMIT – Farmacologia e Bioquímica, ²FMIT

06.089

Cardiovascular effects produced by chronic treatment of sodium cyclamate in hypertensive rats. Pereira AC, Zaroni ACE, Tavares JD, Furtado GS, Baracho NCV, Irulegui RSC FMIT

07. Endocrine and Gastrointestinal Pharmacology

07.001

Role of the cholinergic/NO pathway in delayed gastric emptying of liquids induced by aterpineol in awake rats. Bento-Silva MT¹, Marques RB², Oliveira FGV¹, Silva LL², Piauilino CA², Oliveira IS², Pinheiro, ADN¹, Santos AA³, Oliveira FA², Almeida FRC⁴¹UFC – Fisiologia e Farmacologia, ²NPPM-CCS-UFPI, ³UFC – Medicina, ⁴UFPI – Bioquímica e Farmacologia

07.002

Characterization of neuro-humoral pathways in increased gastric retention of liquids due to mechanical right atrium stretch in awake rats. Palheta Junior RC¹, Okoba W¹, Bento-Silva MT¹, Pinheiro ADN¹, Oliveira, FGV¹, Elias LLK², Rodrigues JA², Santos AA¹ ¹UFC – Fisiologia e Farmacologia, ²FMRP-USP – Fisiologia

07.003

Hypoglycemic activity of new derivates sulfonilhidrazonics in the animal model of type 1 diabetes. Oliveira LGT¹, Kartnaller MA¹, D´Andrea ED², Lima ML², Barreiro EJ², Sudo RT¹, Zapata-Sudo G¹ ¹UFRJ – Desenvolvimento de Fármacos, ²FF-UFRJ

07.004

Antiulcerogenic activity of ethanolic and aqueous extracts of the bark of *Terminalia catappa* in gastric ulcer induced by ethanol in *Rattus norvegicus*. Viana VSL, Brito-Júnior EC, Rabelo RS, Nunes-Filho DM, Maia EP, Martins MCC, Nunes PHM UFPI – Biofisica e Fisiologia

07.005

Nitric oxide (NO) pathway influence the gastroprotection induced by carbon monoxide (CO) against ethanol- induced gastric damage in mice. Lucetti LT, Medeiros J-VR, Gomes AS, Santana APM, Soares PMG, Ribeiro RA, Souza MHLP UFC – Fisiologia e Farmacologia

07.006

Role of nitric oxide synthase (NOS) in the gastroprotective effect of hydrogen sulphide (H₂S) in ethanol-induced gastric damage in mice. Lucetti LT¹, Medeiros J-VR², Gomes AS¹, Santana APM¹, Barbosa ALR¹, Soares PMG³, Cunha FQ⁴, Ribeiro RA¹, Souza MHLP¹ ¹UFC – Fisiologia e Farmacologia, ²UFPI – Biologia, ³UFC – Morfologia, ⁴FMRP-USP

07.007

A possible role of leptin and adiponectin during differentiation of monocyte in macrophage *in vitro*. Acedo SC¹, Gambero S², Cunha FGP², Lorand-Metze I², Gambero A¹ ¹UNIFAG-USF, ²UNICAMP – Hemocentro

07.008

Gastroprotective effect of nitrosyl-ruthenium against the ethanol-induced gastric damage in mice. Santana APM¹, Torres JNL¹, Medeiros J-VR², Lucetti LT¹, Soares PMG³, Wong DVT¹, Tavares BM¹, Saraiva MIR¹, Lopes LGF⁴, Souza MHLP¹ ¹UFC – Fisiologia e Farmacologia, ²UFPI – Biologia, ³UFC – Morfologia, ⁴UFC – Química Orgânica e Inorgânica

07.009

Perinodal adipose tissue and mesenteric lymph node cells interactions during inflammatory intestinal response: adipocytokine and polyunsaturated fatty acids profile. Gotardo EMF¹, Acedo SC¹, De Oliveira CC¹, Carvalho, PO², Gambero A¹ ¹UNIFAG-USF, ²USF – Multidisciplinar

07.010

Saccharomyces boulardii ameliorates gastric dysmotility and inflammation presents in intestinal mucositis induced by 5-fluorouracil in mice. Justino PFC¹, SILVA LM¹, Melo LFM¹, Costa JVG¹, Nogueira AF¹, Lucetti LT¹, Ribeiro RA¹, Souza MHLP¹, Soares PMG² ¹UFC -

Fisiologia e Farmacologia, ²UFC Morfologia/Fisiologia e Farmacologia

07.011

Intestinal permeability test as a useful tool to discriminate patterns of diarrhea due to cancer chemotherapy agents. Wong DVT¹, Bem AXC¹, Nunes LG¹, Leite LL¹, Noronha FJD¹, Barbosa CRN¹, Brito GAC², Souza MHLP¹, Lima AAM¹, Lima-Júnior RCP¹, Ribeiro RA¹ ¹UFC – Physiology and Pharmacology, ²UFC – Morphology

07.012

Mechanisms involved in delayed gastric emptying induced by thermogenic supplement in female ovariectomized mice. Sousa, LN¹, Santos, RGS¹, Oliveira, FGV², Silveira, GL², Bento-Silva MT², Monteiro FMF¹ Santos AA², Palheta Junior RC¹ ¹UNIVASF – Veterinary Medicine, ²UFC – Physiology and Pharmacology

07.013

Metyrapone reverses effects of LPS on neuroendocrine response and maternal behavior of lactating female rats. Vilela FC, Melo CM, Andrade CAF, Giusti-Paiva A ICB-UNIFAL

08. Respiratory, Urinary and Reproductive

08.001

NO association between vitamin D Receptor haplotype and preeclampsia in a Brazilian population. de Rezende V¹, Sandrim VC¹, Palei ACT², Cavalli RC², Luizon MR¹, Tanus-Santos JE¹ ¹FMRP-USP – Farmacologia, ²FMRP-USP – Ginecologia e Obstetrícia

08 002

Effect of intrauterin undernutrition in rat vas deferens: altered Ca²+ homeostasis and implications in male fertility. Muzi-Filho H¹, Souza AM¹, Bezerra CGP¹, Boldrini LC², Takiya CM², Oliveira FL², El-Cheikh MC², Einicker-Lamas M³, Vieyra A³, Lara Morcillo LS¹, Cunha VMN¹ ¹ICB-UFRJ – Farmacologia Celular e Molecular, ²ICB-UFRJ – Ciências Morfológicas, ³IBCCF-UFRJ – Instituto de Biofisica Carlos Chagas Filho

08.003

Functional characterization of erectile dysfunction in middle-aged rats. Silva FH, Monica FZT, Priviero FBM, Flores Toque HA, Antunes E UNICAMP – Pharmacology

08.004

Pre-clinical evaluation of the isoniazid-derived compounds IQG-607 and IQG-639 in a mouse model of tuberculosis. Rodrigues-Junior VS¹, Santos Jr AA¹, Jader ABS¹, Souto AA¹, Calixto JB², Basso LA¹, Santos DS¹, Campos MM¹ INCTTB-PUCRS, ²UFSC – Farmacologia

08.005

Effect of chronic undernutrition in rat vas deferens: altered Ca²⁺ homeostasis and

implications in male fertility. Muzi-Filho H^1 , Bezerra CGP^1 , Souza AM^1 , Boldrini LC^2 , Takiya CM^2 , Oliveira FL^2 , El-Cheikh MC^2 , Einicker-Lamas M^3 , Vieyra A^3 , Lara Morcillo LS^1 , Cunha VMN^1 – 1ICB -UFRJ – Farmacologia Celular e Molecular, 2ICB -UFRJ – Ciências Morfológicas, 3IBCCF -UFRJ

08.006

Functional, molecular and morphological characterization of bladder dysfunction in diabetic mice. Leiria LOS¹, Carvalho FDGF¹, Franco-Penteado CF², Monica FZT¹, Claudino MA¹, Schenka A¹, Nucci G¹, Antunes E¹¹UNICAMP – Farmacologia, ²UNICAMP – Hemocentro

08.007

Relaxation of airways smooth muscle induced by glucagon is dependent of epithelial-derived factor. Insuela DBR, Coelho LP, Cruz CCD, Serra MF, Cordeiro RSB, Silva PMR, Martins MA, Carvalho VF IOC-FIOCRUZ – Fisiologia e Farmacodinâmica

08.008

Role of CXCR2 in a model of pulmonary infection with *Klebsiella pneumoniae*. Paula TP¹, Arifa RDN¹, Ávila TV², Fagundes CT³, Cruz RC¹, Werneck SMC¹, Karklin YC¹, Baltazar LM¹, Madeira MFM¹, Campi PS¹, Pinho V³, Teixeira MM³, Souza DG³ ¹UFMG – Microbiologia, ²UFPR – Farmacologia, ³UFMG – Bioquímica e Imunologia

08.009

Alpha-1 adrenoceptor mediated contractions of the rat bladder neck. Pacini ESA, Pupo AS UNESP Botucatu – Farmacologia

09. Natural Products and Toxinology

09.071

Antioxidant activity of dichloromethane fraction of *Baccharis trimera* and its effects on murines macrophages. Freitas GM, Gayer CRM, Coelho MGP, Sabino KCC UERJ – Bioquímica

09 072

Pulsed therapeutic ultrasound effects on skeletal muscle damage induced by *Bothrops jararacussu* snake venom. Tomaz MA¹, Saturnino-Oliveira J², Machado MM¹, Cons BL¹, Calil-Elias S³, Martinez AMB⁴, Melo PA¹ ¹UFRJ – Farmacologia Básica e Clínica, ²UESC – Microscopia Eletrônica, ³UFF – Farmácia e Administração Farmacêutica, ⁴UFRJ – Embriologia e Histologia

09 073

Study of the neuropharmacological activity of the compound GB-2a obtained from *Rheedia gardneriana*. Santos ECS¹, Marques de Carvalho RS¹, Cechinel-Filho V², De Lima TCM¹ ¹UFSC – Farmacologia, ²NIQFAR-UNIVALI

Effects of chronic treatment with aqueous extract of *Cuphea balsamona* L. on the lipid profile of rats submitted to a high-cholesterol diet. Baracho NCV¹, Brügger PG², Camanducaia DSM², Sanches AIF², Sanches RS² ¹FMIT – Farmacologia e Bioquímica, ²FMIT – Medicina

09.075

Evaluation of antinociceptive property of ethanolic extract of *Buddleja brasiliensis*. Cavallini OF¹, Marinho DG², Freitas GA¹, Carneiro LU¹, Contarato KS¹, Almança CCJ³, Marinho BG¹ ¹UFES – Medicina Veterinária, ²ICB-UFRJ – Farmacologia e Química Medicinal, ³FAFIA – Farmácia

09.076

Antidiarrheic activity of hidroalcoholic extract from barks of *Astronium fraxinifolium* schott in mice. Serikava SMO¹, Kushima H¹, Hiruma-Lima CA¹, da Silva VC², Vilegas W³ ¹IB-UNESP-Botucatu – Fisiologia, ²IQ-UNESP – Química Orgânica, ³UNESP-Araraquara – Química Orgânica

09.077

Evaluation of the anti inflammatory cutaneous effect of *Croton brasiliensis*. Silva MO¹, Prudente AS¹, Conserva LM², Cabrini DA¹, Otuki MF³ ¹UFPR – Farmacologia, ²IQB-UFAL, ³UEPG – Ciências Farmacêuticas

09.078

Crotoxin modifies intracellular signaling involved in phagocytosis by neutrophils. Lima TS¹, Sampaio SC¹, Della-Casa MS², Cirillo MC¹ ¹IBu – Fisiopatologia, ²IBu – Imunopatologia

09.079

Anxiogenic-like effect of repeated administration of *Passiflora alata* aqueous extract in rodents in the elevated plus maze. Braga A¹, Fenner R¹, Betti AH¹, Stolz ED², Hasse DR³, Gosmann G¹, Rates SMK¹ ¹UFRGS – Ciências Farmacêuticas, ²UFRGS – Neurociências, ³UFRGS – Psicofarmacologia Experimental, ⁶UFRGS – Ciências Farmacêuticas

09.080

Bioassay-guided fractionation of the marine sponge *Polymastia janeirensis* for anticancer and anticoagulant activity. Biegelmeyer R¹, da Frota Jr. MLC², Andrade JMM¹, Carraro JLF³, Zanotto-Filho A², Lorenzi R², Mothes B³, Moreira JCF², Henriques AT¹ ¹UFRGS – Farmacognosia, ²UFRGS – Bioquímica, ³Fundação Zoobotânica – Ciências Naturais

09.081

Biomonitoring of *Coutarea hexandra* in topic model of inflammation in mice. Prudente AS¹, Lima SF², Conserva LM², Cabrini DA¹, Otuki MF³ ¹UFPR – Farmacologia, ²IQB-UFAL, ³UEPG – Ciências Farmacêuticas

09.082

Preliminary investigation on the pharmacological activities of *Araucaria angustifolia* hydroalcoholic extract in insects. Lucho APB¹, Corrêa MS², Franco J³, Dal Belo CA¹ ¹UNIPAMPA – Toxinologia, ²UNIPAMPA – Química, ³UNIPAMPA – Bioquímica

09.083

Amblyomin-X impairs VEGF-induced new vessels formation by altering endothelial cell functions. Drewes CC¹, Dias RYS¹, Hebeda CB¹, Simons SM², Chudzinski-Tavassi AM², Farsky S¹¹FCF-USP – Análises Clínicas e Toxicológicas, ²IBu – Bioquímica

09.084

Ability of suramin to antagonize permeability alterations induced by honey bee venom. El-Kik CZ, Fernandes FFA, Fonseca TF, Gaban GA, Branco AMC, Silva CLM, Melo PA UFRJ – Farmacologia Básica e Clínica

09.085

Purification and characterization of hyaluronidase from venom of the Brazilian spider *Vitalius dubius* (Araneae, Theraphosidae). Sutti R, Tamascia ML, Hyslop S UNICAMP – Farmacologia

09.086

Effect of oral treatment with crude extract of *Plectranthus neochilus* in models of nociception and injury of the stomach mucosa. Calheiros AS¹, Souza¹, Azeredo JA², Castro-Faria-Neto HC², Frutuoso VS.² ¹FIOCRUZ – Imunofarmacologia, ²FIOCRUZ – Fisiologia e Farmacodinâmica

09.087

Hecogenin-induced gastroprotection against acute gastric lesions: role of prostaglandins and K⁺·channels. Neves KRT¹, Cerqueira GS¹, Siqueira RMP¹, Rocha NFM¹, Freitas APF², Vasconcelos SMM¹, Leal LKAM³, Rios ERV¹, Macedo DS¹, Viana GSB¹, Moura BA¹, Sampaio LRL¹, ¹UFC – Fisiologia e Farmacologia, ²UFC – Ciências Médica, ³UFC – Farmácia

09.088

Antinociceptive effect of the hydroalcoholic extract of *Salvia officinalis* in mice. Rodrigues MRA¹, Kanazawa LKS¹, dos Santos FC¹, Neves TLM¹, Pereira IT.¹, Burci LM¹, Santos ARS², Pizzolatti GM³, Baggio CH¹, Werner MFP¹ ¹UFPR – Farmacologia, ²UFSC – Ciências Fisiológicas, ³UFSC – Química

09.089

Antiophidic activity of the Amazon plant *Humirianthera ampla* and its compounds lupeol and sitosterol. Strauch MA¹, Azevedo SM², Ricardo HD³, Lemos BC³, Tomaz MA¹, Machado MM³, Melo PA¹ ¹UFRJ – Farmacologia Básica e Clínica, ²UNIR – Química Orgânica, ³UFRJ – Farmacologia e Química Medicinal

Evaluation of anti-inflammatory activity of crude extract from *Sapium glandulatum (Vell.)*. Soley BS¹, Mendes DAGB¹, Ferreira BGA², Zuffellato-Ribas KC², Otuki MF³, Cabrini DA¹ ¹UFPR – Farmacologia, ²UFPR – Botânica, ³UEPG – Ciências Farmacêuticas

09.091

Hypericum polyanthemum and its main phloroglucinol derivative uliginosin B present synergistic effect with different antidepressant drugs in the forced swimming test in mice. Stein AC¹, Centurião FB¹, Haas JS¹, Viana AF², Do Rego JC³, Costentin J³, Von Poser GL², Rates SMK² ¹UFRJ - Farmácia, ²UFRGS - Ciências Farmacêuticas, ³Université de Rouen - Neuropsychopharmacologie Expérimentale

09.092

Cardiovascular effects of *Syzygium cumini* L. Skeels fruit extract in rats. Tenório EP¹, Ferreira AKB¹, Oliveira DA¹, Aquino PGV², Araújo-Júnior JX¹, Santana AEG², Ribeiro EAN¹ ¹ESENFAR-UFAL, ²UFAL – Química e Biotecnologia

09.093

Subchronic toxicity of a proteolytic fraction from *C. candamarcensis* latex: qualitative histopathological analysis. Villalba MIC¹, Bilheiro RP², Salas CE³, Cassali, G. D.⁴, Vasconcelos A⁴, Tagliati CA⁵, Lopes MTP² ¹UFMG – Fisiologia e Farmacologia, ²UFMG – Farmacologia, ³UFMG – Bioquímica e Imunologia, ⁴UFMG – Patologia Geral, ⁵UFMG – Farmácia

09.094

Effect of salvia (*Salvia officinalis*) hydroalcoholic extract on the topic anti-inflammatory response in mice. Lopes VM, Fonseca JP, Melo GAN, Damião JM, Freitag A, Amado CAB, Cuman RKN UEM – Farmácia e Farmacologia

09.095

Spasmolytic action of *Solanum agrarium* sendtner (Solanaceae) involves blockade of L-type calcium channels on guinea-pig ileum. Oliveira GA¹, Correia ACC¹, Santos RF¹, Agra MF¹, Silva TMS², Silva BA¹ ¹LTF-CCS-UFPB – Ciências Farmacêuticas, ²DQ-UFRPE

09 096

Hydroxydihydrocarvone, a monoterpene derivative, decreases carrageenan-induced inflammation in rodents. Camargo E, de Souza DP UFS- Fisiologia

09.097

Evaluation of anethole obtained from *Foeniculum vulgare Mill* essential oil on renal ischemia and reperfusion in mice. Fonseca JP¹, Lopes VM¹, Damião MJ¹, Pinheiro RJ¹, Giannocco G², Bersani-Amado CA¹, Cuman RKN¹ ¹UEM – Farmácia e Farmacologia, ²USP – Fisiologia e Biofísica

09.098

Inhibitory effects of *Combretum leprosum* Mart. & Eicher, *Protium heptaphyllum* March and *Copernica prunifera* on glycated hemoglobin. Piauilino CA¹, Sales Filho HLA¹, Sousa VR¹, Ayres MCC², Carvalho AA², Chaves MH², Brito SMRC¹ 1NPPM-UFPI, ²UFPI – Química

09.099

Involvement of potassium channels and cyclic nucleotides in the tocolytic action of Labdane-302 on rat uterus. Travassos RA, Macedo CL, Santos RF, Oliveira GA, Silva ACL, Carreiro JN, Ferreira TF, Tavares JF, Silva BA LTF-UFPB – Ciências Farmacêuticas

09.100

Involvement of K⁺ channels on spasmolytic effect of the fraction of the total alkaloids from *Solanum paludosum* Moric. root bark on guineapig ileum. Silva ACL¹, Monteiro FS¹, Martins IRR², Travassos RA⁴, Santos RF², Agra MF¹, Basílio IJLD², Bhattacharyya J², Silva BA¹, ¹LTF-UFPB – Ciências Farmacêuticas, ²LTF-CCS-UFPB

09.101

Evaluation of the activity of the crude extract, fractions and isolated compounds obtained from the leaves of *Chrysophyllum cainito* against sensory changes present in experimental models of clinical pain in rodents. Meira NA¹, Quintão NLM¹, Cechinel Filho V¹, Klein Jr LC², Martin Z³, Rodriguez LMP³ ¹NIQFAR-UNIVALI – Ciências Farmacêuticas, ²UNIVALI – Produtos Naturais e Substâncias Bioativas, ³CICY – Biotecnologia

09.102

Gastroprotective activity of chloroform and aqueous fractions obtained of hydroalcoholic extracts of *Brassica oleracea* L. var. *acephala* DC. Lemos M, Santin JR, Oliveira AP, Klein LC, Niero R, Andrade SF NIOFAR-CCS-UNIVALI

09 103

Antinociceptive effects of *Rheedia longifolia* Planch & Triana aqueous extract and its fractions. Nascimento DD¹, Siqueira AM¹, Costa NF¹, Bérenger ALR², Castro-Faria-Neto HC¹, Figueiredo MR², Frutuoso VS¹¹IOC-FIOCRUZ – Imunofarmacologia, ²Farmanguinhos-FIOCRUZ – Produtos Naturais

09.104

Hypertension and oxidative stress associated with development of fetal programming: influence of extract from *Vitis vinifera* grape skin. Emiliano da Silva AF¹, Costa CA², Bem G², Carvalho LCRM³, Boaventura GT⁴, Soares de Moura R³, Resende AC¹¹UERJ – Farmacologia e Psicobiologia, ²UERJ – Farmacologia e Psicobiologia, ³UERJ – Farmacologia, ⁴UFF – Nutrição Dietética

09.105

Comparative study between the effect of aqueous extract of Bixa orellana L. and sinvastatin on

lipidic profile and blood pressure of hypertensive rats and submitted to a high-cholesterol diet. Reis MLA, Baracho NCV, Ferreira MRC FMIT

09.106

Study of the acute toxicity of *Eugenia brasiliensis* Lamarck and *Eugenia beaurepaireana* (Kiaerskou) Legrand extracts on mice. Lemes EV¹, Cabrini DA², Otuki MF², Pizzolatti MG³, Brighente IMC³, Magina MDA⁴, Beirith A⁵ ¹FURB – Physiotherapy, ²UFPR – Pharmacology, ³UFSC – Chemistry, ⁴FURB – Pharmaceutical Sciences, ⁵FURB – Natural Sciences

09.107

Evaluation of the anti-inflammatory and antinociceptive activities of the leaf and stem of *Costus spiralis* (Jacq.) Roscoe (Costaceae). Campesatto-Mella E¹, Araújo MV¹, Silva AKD¹, Santos DLF¹, Delatorre P², Rocha BAM³ ¹UFAL - Farmacologia, ²UFPB - Biologia Celular, ³UFC – Bioquímica.

10. Cancer and Cell Proliferation

10 001

Obesity and cancer development: effect of metformin. Fonseca EAI¹, Oliveira, M. A.¹, Tostes RCA¹, Colquhoun A², Carvalho MHC¹, Zyngier SZ¹, Fortes ZB¹ ¹ICB-USP – Farmacologia, ²ICB-USP – Biologia Tecidual e do Desenvolvimento

10.002

Effects of P2X₇ receptor agonists on cell proliferation of human glioma cell lines U138-MG and M059J. Gehring MP¹, Campos MM², Battastini AMO³, Morrone FB⁴ ¹PUCRS − Farmacologia Aplicada, ²PUCRS − Cirurgia-Odontologia, ³UFRGS − Bioquímica, ⁴PUCRS − Farmácia

10.003

Evaluation of butyrate and aqueous extract of the *Ilex paraguariensis* enemas in reducing the levels of malondialdehyde in exclusion of colitis. Silva CMG, Lameiro TMM, Marques LHS, Almeida MG, Cunha FL, Martinez CAR – Sao Francisco University – Cancer and cell proliferation

10.004

Glucose starvation induces melanogenesis in B16F10 murine melanoma cells through oxidative stress. Piva B¹, Diaz BL² IBCCF-UFRJ – Programa de Imunobiologia

10.005

Structure-related activity of a series of chalcones derived from quinoxaline on *in vitro* oral squamous cell carcinoma proliferation. Mielcke TR¹, Mascarello A², Calixto JB³, Yunes RA², Leal PC², Morrone FB⁴, Campos MM⁵ ¹PUCRS − Farmacologia, ²UFSC − Química, ³UFSC − Farmacologia, ⁴PUCRS − Farmácia, ⁵PUCRS − Cirurgia-Odontologia

10.006

Stress-related neurohormonal mediators influence the human oral cancer cells behavior. Bernabé DG¹, Tamae AC¹, Miyahara GI², Biasoli ER², Oliveira SHP¹ ¹FOA-UNESP - Ciências Básicas, ³FOA-UNESP - Oncologia Bucal

10.007

Anticancer Activities of 2,2-Dimethyl-3-(3-nitrophenylamino)-2,3-dihydro-naphtho[1,2-b]furan-4,5-dione (1): Oxidative Stress based-apoptosis. Araújo AJ¹, Marinho-Filho JDB¹, Silva-Junior EN², Moura MABF³, Goulart MOF⁴, Ferreira VF², Pessoa C¹, Moraes MO¹, Costa-Lotufo LV¹, Montenegro RC¹ ¹UFC – Fisiologia e Farmacologia, ²UFF – Química Orgânica, ³UFAL – Química, ⁴UFAL – Química e Biotecnologia

10.008

Effect of crotoxin, the main toxin of the rattlesnake C.*d. terrificus* venom, on secretory activity of peritoneal macrophages during tumor progression. Studies *in vivo* and *in vitro*. Costa ES¹, Faiad OJ¹, Curi R², Cury Y¹, Sampaio SC¹¹IBu – Fisiopatologia, ²ICB-USP – Fisiologia e Biofisica

10.009

Cytotoxic activity of benzothiazole analogues. Vieira GC¹, Araújo AJ¹, Vasconcelos, TRA², Ferreira VF², Nogueira, AF², Pessoa CO¹, Costa-Lotufo LV¹, Montenegro RC¹, Moraes MO¹ ¹UFC – Fisiologia e Farmacologia, ²UFF – Química Orgânica

10.010

Assessment of the cytotoxic, antiproliferative, genotoxic, mutagenic and pro-apoptotic activities of indirubin, directed for its use as an anticancer substance. Fogaça MV¹, Cardoso PF¹, Cândido PM¹, Varanda EA², Calvo TR³, Vilegas W³, Cólus, IMS¹ ¹UEL− Biologia Geral, ²FCFAR-UNESP − Ciências Biológicas, ³IQ-UNESP − Química

10.011

Characterization of cytotoxic activity induced by phospholipase A2 (PLA-LYS49) isolated from *Bothrops jararacussu* snake venom. Lino CNR¹, Sorgi CA², Cintra ACO², Sampaio SV², Faccioli LH², Nomizo A² ¹FFCLRP-USP – Biologia, ²FCFRP-USP – Análises Clínicas, Toxicológicas e Bromatológicas

10.012

Involvement of the kinin B1 receptor in melanoma progression. Maria AG¹, Reis RI¹, Dillenburg-Pilla P¹, Pesquero JB², Costa-Neto CM¹ ¹FMRP-USP – Bioquímica e Imunologia, ²UNIFESP – Biofísica

10.013

Overexpression of platelet-derived growth factor receptor- α in basal-like triple-negative breast cancer. Melo-Filho AF¹, Ribeiro RA², Rodrigues EJM², Magalhães HO¹, Soares FA³, Chagas DWN², Lima VCC⁴ – ¹ICC – Mastologia, ²UFC –

Fisiologia e Farmacologia, ³HCANC - Anatomia Patológica, ⁴HCANC - Oncologia Clínica

10 014

Leptin activates the mTOR pathway in epithelial cells: roles in lipid metabolism, inflammatory mediator production and cell proliferation. Fazolini NPB FIOCRUZ – Fisiologia e Farmacodinâmica. Fazolini NPB¹, Viola JPB², Maya-Monteiro CM¹, Bozza PT¹. ¹IOC-FIOCRUZ – Imunofarmacologia, ²INCa – Cellular Biology

10.015

Investigation of cytotoxicity of 4-nerolidilcaterol and its synthetic derivatives. Cunha CRM¹, Menegatti R², Valadares MC² ¹UFG – Farmacologia e Toxicologia Celular, ²UFG – Química Medicinal

10.016

Effects of tumor-derived extracellular matrix on endothelial cell functions: implications to tumor-associated angiogenesis. Brandão-Costa RM¹, Saldanha-Gama RF², Helal Neto E², Morandi V³, Barja Fidalgo TC¹ ¹UERJ – Farmacologia, ²UERJ – Farmacologia e Psicobiologia, ³UERJ – Biologia Celular e Genética

10.017

Withaphysalin F induces apoptosis and necrosis in HER-2 overexpression breast cell line. Montenegro RC¹, Rocha DD¹, Rodrigues FAR¹, Lima PDL⁴, Pessoa CO², Maia I³, Pessoa ODL³, Moraes MO¹ ¹UFC – Fisiologia e Farmacologia, ²UFC – Oncologia Experimental, ³UFC – Química Orgânica, ⁴UEPA – CCBS

10.018

5-hydroxy-2-(4-methylphenylthio)-1,4-naphthoquinone, a juglone derivative, induces apoptosis and necrosis in hl-60 cell line. Araújo AJ¹, Montenegro RC¹, Marinho-Filho JDB¹, Rocha DR², Souza ACG³, Pessoa C¹, Costa-Lotufo LV¹, Ferreira VF³, Santos WC⁴, Moraes MO¹¹UFC – Fisiologia e Farmacologia, ²UFF – Instituto de Química, ³UFF – Química Orgânica, ⁴UFF – Farmácia e Administração Farmacêutica

11. Clinical Pharmacology, Pharmacokinetics, Pharmacogenomics and Preclinical Toxicology

11.023

Plasma levels of matrix metalloproteinases -8 and -9 and their endogenous inhibitors TIMP-1 and TIMP-2 in untreated hypertensive patients. Fontana V¹, Silva PS², Belo VA², Biagi C³, Tanus-Santos JE¹¹FMRP-USP - Farmacologia, ²FCM-UNICAMP - Farmacologia, ³Santa Casa de Aracatuba - Cardiologia

11.024

Efficacy and safety of the *Mentha crispa* in the treatment of trichomonas infections: a randomized, open and parallel study. Pimenta Costa CS, Cavalcanti PP, Cunha GH, Pontes AV,

Fechine FV, Oliveira JC, Andrade WS, Moraes RA, Camarão GC, Moraes MEA UFC - Fisiologia e Farmacologia

11.025

Effects of sitagliptin on visual alterations diagnosed by visual evoked potential in type 2 diabetic patients. Capistrano Júnior, VL¹, Tagliapietra JI¹, Pontes AV¹, Cunha GH¹, Rocha MBS.¹, Frota Bezerra FA¹, Vale OC¹, Fernandes VO², Montenegro Jr RM², Moraes MEA¹ ¹UFC – Fisiologia e Farmacologia, ²HU-UFC – Endocrinologia e Diabetes, ⁴HU-UFC – Endocrinologia e Metabologia

11.026

NAT2, GSTT1 and GSTM1 genotypes and predisposition to adverse drug reaction (ADR) in tuberculosis patients. Costa GNO¹, Santana CVN², Konstantinovas C¹, Magno LA³, Bastos-Rodrigues L³, Miranda DM⁴, Romano-Silva M³, Marco LAC⁵, Di Pietro G¹, Rios-Santos F¹ LAFEM-UESC – Ciências da Saúde, ²LAFEM-UESC – Ciências Biológicas, ³UFMG – Saúde Mental, ⁴UFMG – Pediatria, ⁵UFMG – Cirurgia

11.027

Sulfadiazine determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS-MS): application to pharmacokinetic study. Nascimento DF, Oliveira JC, Pimenta Costa CS, Rocha MBS., Moraes RA, Cunha GH, Magalhães MS, Uchoa CRA, Moraes MO, Moraes MEA UFC - Fisiologia e Farmacologia

11.028

Susceptible NOS3 (endothelial nitric oxide synthase) gene haplotypes in hypertension and resistant hypertension. Luizon MR¹, Sandrim VC², Izidoro-Toledo TC¹, Coelho EB³, Tanus-Santos JE¹¹FMRP-USP – Farmacologia, ²Santa Casa de Belo Horizonte, ³FMRP-USP – Clínica Médica

11.030

New educational strategies to improve pharmacology teaching: a interdisciplinary approach. Fidalgo-Neto AA, Lopes RM, Alves LA² IOC-FIOCRUZ Laboratório de Comunicação Celular

11.031

Interference of matrix metalloproteinase (MMP)-9 genotypes and haplotypes in the responsiveness to antihypertensive therapy of patients with preeclampsia or gestational hypertension. Palei ACT¹, Sandrim VC², Cavalli RC³, Gerlach RF⁴, Tanus-Santos JE⁵ ¹FCM – UNICAMP – Farmacologia, ²Santa Casa de Belo Horizonte – Farmacologia, ³FMRP-USP – Ginecologia e Obstetrícia, ⁴FORP-USP – Morfologia, ⁵FMRP-USP – Farmacologia

Comorbidities and medication use in elderly women with vestibular disorders. Prezotto AO, Paulino CA, Onishi ET UNIBAN

11.033

Serum cortisol and IL-10 levels increase in chronic renal failure patients with cognitive deficit. Degaspari D^1 , Stein G^2 , Munhoz CD^1 , Martins JPB 2 , Ribeiro Junior E^2 , Sá Lima L^1 , Tzanno-Martins CB^1 , Scavone C^1 , Kawamoto EM^1 ICB-USP – Farmacologia, 2CEHUS -CINE

11 034

Changes in cardiovascular and biochemical parameters produced by chronic treatment with celecoxib in normotensive rats. Figueiredo LF, Baracho NCV FMIT

Conferences

Ligand-directed signaling bias and its potential for new therapeutics.

Roger J. Summers (Monash Institute, Australia).

Ligand-directed signaling bias describes the reversal of efficacy and/or potency observed for different signaling pathways by certain drugs acting at G protein-coupled receptors. Current evidence suggests that it may be explained in terms of the production or selection of unique receptor conformations by particular drugs. Several key factors have emerged for the identification of signaling bias. The bioassay critically affects the type and magnitude of drug efficacy observed and many drugs are now known that behave as classical antagonists for one signaling pathway and agonists another. Efficacy therefore depends on the assay being used and a drug may be described as an antagonist for cAMP accumulation but an agonist for Erk1/2 phosphorylation, an effect termed pluridimensional efficacy (Galandrin & Bouvier, 2006). Recent studies with β_1 - β_2 - and β_3 -ARs have shown that many compounds originally classified as antagonists cAMP signaling have quite different efficacy at other signaling pathways and can act as agonists, neutral or inverse antagonists for MAP kinase signaling (Galandrin & Bouvier, 2006; Baker et al., 2003; Sato et al., 2007; Sato et al., 2008; Galandrin et al., 2008) raising the possibility that further development of these compounds will allow the selection of a profile which is useful therapeutically. This work is supported by a project grant 491190 (to R.J. Summers and B.A. Evans) and program grant 519461 (to P.M. Sexton, A. Christopoulos and R.J. Summers) from the National Health and Medical Research Council of Australia. Baker JG et al., (2003) Mol Pharmacol 64, 1357-1369; Galandrin S & Bouvier M (2006) Mol Pharmacol 70, 1575-1584; Galandrin S et al., (2008) Mol Pharmacol 74, 162-172; Sato M et al., (2007) Mol Pharmacol 72, 1359-1368; Sato M et al., (2008) Mol Pharmacol 74, 1417-1428

Anti-inflammatory GPCRs as targets for novel therapeutics.

Mauro Perretti (Queen Mary University of London, London, UK).

Cell trafficking in inflammation is tightly controlled by endogenous anti-inflammatory mediators. Their properties are mediated by specific GPCRs which activate anti-inflammatory circuits limiting leukocyte extravasation in a space and time-dependent fashion. Our work focuses on some of these GPCRs, namely FPR2, a receptor activated by annexin A1 (AnxA1) and lipoxin A4, as well as MC3, a receptor activated by natural and synthetic melanocortin peptides (e.g. ACTH). Our approach is, at the beginning, pharmacological, so that the properties of specific ligands (often peptides, more recently also NCEs) as assessed in models of acute inflammation. Then, antagonists and/or transgenic mouse colonies are used to pinpoint the receptor target(s) responsible for these anti-inflammatory effects. Such an approach is then expanded by determining, on one hand, the molecular events and cellular responses regulated by FPR2 activation (in the case of Annexin A1) and, on the other the hand. pathophysiological relevance of a given receptor. The latter aspect is addressed by using transgenic colonies, and it requires the study of the full time course: we use the mouse paw oedema as a prototype of an acute model of inflammation and the K/BxN inflammatory arthritis, to monitor the relevance of these pathways in more prolonged (chronic?) inflammatory experimental conditions. Exquisite control of the process of blood-borne cell extravasation is achieved by activation of these receptors, associated with multiple proresolving actions on other processes including osteoclastogenesis, chondrocyte activation and phagocytosis of apoptotic leukocytes. Novel concepts in the field are linked to modulation of the expression of anti-inflammatory

GPCRs and to the exploitation of this approach for innovative drug discovery programs. Determining how FPR2 (and MC3) expression changes during an on-going inflammatory reaction can allow prediction of efficacy of new selective agonists for these receptors. Similarly, monitoring their expression in human cells and tissue samples would predict efficacy in human chronic inflammatory conditions. We are working on samples taken from patients suffering from rheumatoid arthritis and giant cell arteritis. In either case, treatment of patients with glucocorticoids, at doses able to control disease progression, would augment expression of FPR2 in circulating PMN and monocytes. Finally, the overall aim of this research is to develop selective agonists to either FPR2 or MC3 as novel antiinflammatory therapeutics. We propose that these new drugs would produce very little, if any, side effects, as they will be operating in the same way our body disposes of an inflammatory episode. Such novel anti-inflammatory therapeutics would represent a fresh change to the drug discovery programs applied, and developed, so far in the pharmaceutical world. Selected References: Perretti M, Chiang N, et al. Endogenous lipid- and peptide-derived antiinflammatory pathways generated with glucocorticoid and aspirin treatment activates the lipoxin A4 receptor. Nature Med 8: 1296-1302, 2002. Serhan CN, et al. Resolution of inflammation: state of the art, definitions and

terms. *FASEB J* 21:325-32, 2007. Perretti M, D'Acquisto. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. *Nat Rev Immunol* 9: 62-70, 2009.

Toll-like receptors: emerging roles in reproductive physiology and therapeutics.

Mark Hedger (Monash Institute, Australia)

Interactions between the immune and reproductive systems have important consequences for fertility and reproductive health. There is increasing evidence that many of these interactions involve pattern recognition receptors, such as the Toll-like receptors (TLRs), which recognize microbial products or "danger" signals, called pathogen associated molecular patterns. Although abundantly expressed by macrophages, TLRs are also widely distributed, particularly in epithelia. The TLRs are important in providing protection against infection in the reproductive tract, but there is increasing evidence for involvement of these receptors in more basic pathology and physiology. In the female, TLRs have been implicated in normal ovarian, endometrial and placental function, as well as in ovarian cancer, pelvic inflammatory disease, intrauterine growth restriction, pre-eclampsia pre-term and birth. In the male, TLRs appear to play a role in prostatitis and prostatic cancer, but also in the control of testicular steroidogeand spermatogenesis. nesis Spermatogenesis is a complex, organized and highly regulated process involving intimate interactions between the developing germ cells and their supporting Sertoli cells. Sertoli cells express several TLRs and respond to TLR ligands by producing a number of inflammatory cytokines and mediators. These products regulate spermatogonial / spermatocyte development and many critical supportive functions of the Sertoli cells, and their production varies across the cycle of seminiferous the epithelium,

with significant changes in expression coinciding with key events within the cycle. Such relationships between inflammatory signaling and spermatogenesis provide a potential mechanism to account for the link between infection/inflammation and testicular dysfunction. At least some of the negative effects of inflammation on spermatogenesis may be attributed to elevated production of inflammatory mediators that may exert disruptive effects on germ cell development and survival, as well as Sertoli cells support. Further investigation of these interactions may be applicable to improving fertility in men with spermatogenesis. disordered Finally, it is also expected that these studies may create new for opportunities modulating fertility by targeting spermatogonial renewal and meiosis as a safe, effective and reversible male contraceptive. This work has been supported by grants from the National Health and Medical Research Council and the Australian Research Council.

Indoleamine 2,3 dioxygenase (IDO) inhibitors: from bench to bedside.

Andrew L Mellor Immunotherapy Center, Medical College of Georgia, Augusta GA. USA

Indoleamine 2.3 dioxygenase (IDO) is an intracellular enzyme that catabolizes tryptophan (1). IDO is induced in settings of chronic inflammation associated with many diseases including cancer and infectious diseases. In 1998 we reported that pharmacologic inhibition of IDO during pregnancy induced rejection of fetal tissues by maternal T cells (2). This pioneering study identified IDO as a pivotal regulator of adaptive immunity, and suggested that IDO inhibitors might be effective as immune modulators to treat clinical syndromes in which immune system hyporeactivity contributed to disease progression. Immune hypo-reactivity is the hallmark of tumors and pathogens cause persistent infections. IDO

activity at sites of tumor growth and infection creates immune privilege, allowing these agents of disease to persist (3). Consistent with this notion IDO inhibitors - especially when combined with methods to incite immunity - enhance immunity to tumors and infected cells (4-6). In my presentation I will describe the current state knowledge regarding the role of IDO in cancer and infectious diseases. and summarize progress in testing IDO inhibitors as cancer vaccine adjuvants in ongoing experimental clinical trials. This research is funded by grants from the NIH (AI063402, AI075165, AI083005). References: 1. Huang L, Baban B, Johnson BA, & Mellor AL (2010) Dendritic cells, IDO and acquired immune privilege. Int. Rev. of Immunology 29:133-155. 2. Munn DH, et al. (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191-1193. Mellor AL & Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74-80. 4. Muller AJ, et al. (2005) Inhibition of IDO, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312-319. 5. Potula R, et al. (2005) Inhibition of IDO enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106:2382-2390. 6. van der Sluijs KF, et al. (2006) Influenzainduced expression of IDO enhances IL-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 193:214-222.

The stressed CNS: when glucocorticoids aggravate inflammation.

Javier R. Caso. Department of Biology, Stanford University, California-USA

Glucocorticoids (GCs) are hormones released during the stress response that are well known for their immune-suppressive and

properties: anti-inflammatory however, recent advances have uncovered situations wherein they have effects in the opposite direction, challenging the classic view of the GCs actions at a variety of levels. It was first observed that under some circumstances, acute GC exposure could have pro-inflammatory effects on the peripheral immune response. More recently, chronic exposure to GCs has been found to have pro-inflammatory effects on the specialized immune response to injury in the central nervous system. The central nervous system (CNS) is a particularly interesting example, both because of its unique immune environment, and because GCs affect immune responses differently in different brain regions. Thus, it has been shown that in some cases, glucocorticoids can increase pro-inflammatory cell migration, cytokine production, and even transcription factor activity in the brain. Here, we discuss the contexts wherein GCs increase CNS inflammation and point out directions for future investigation as well as the considerable clinical implications of these findings.

Genetic modeling of PI3K inhibition.

Emilio Hirsch (University of Turin, Italy)

Phosphoinositide 3-kinases (PI3K) are crucial elements needed for receptor-mediated signal transduction and modification of PI3K signaling is emerging as a key element in cancer, inflammation, metabolic disorders and cardiovascular diseases. PI3K consist of heterodimers of a 110 kD catalytic (p110) as well as a regulatory/adapter subunit and are required for the production of a membrane bound phosphorylated lipid (PIP3) that acts as a critical secondary messenger molecule. Class I p110s (p110a, β , y and δ) share significant homology but studies using genetically engineered mice show that they all play non-redundant roles. Interestingly, modeling by

genetic means of PI3K inhibition revealed that different isoforms can be distinctly involved in different pathologies. For example, we recently demonstrated that, while PI3Ky is crucially involved in the establishment of inflammatory responses, PI3Kβ is a key determinant in the development of Erbb2-driven mammary gland cancer. In addition, we also recently found that PI3Ky signaling also occurs in the heart where it can modulate the contractile response and contribute to the development of heart failure. While these genetic studies recently provided support for PI3K catalytic activity as a promising drug target they also unexpectedly revealed that these proteins not only work as kinases but also as scaffolds for proteinprotein interactions. Despite this regulation, complex genetic modeling of PI3K inhibition clearly supports that selective targeting of different PI3K isoforms can represent a promising strategy to improve efficacy and reduce side effects. Efforts to produce and test such drugs are under way and clinical trials are foreseen for the next future. This work is supported by Regione Piemonte, AIRC, Leducq Foundation, European Union FP6.

Chemokines and their receptors: the Nexus of neurobiology and immunobiology

Richard Ransohoff (Cleveland Clinic, USA)

Chemokines comprise a family of peptides that act through G protein-couple receptors (GPCRs) to regulate leukocyte migration throughout all tissues, in an exquisitely specific and flexible fashion. Initial studies related to neuroinflammation asked how chemokines and chemokine receptors governed inflammatory cell recruitment to the CNS during immune-mediated or virus-induced inflammation. More recently, it has become clear that the CNS complement of constitutive chemokines supports developmental and neurophysiological functions as well as regulating the behavior of both macroglia and microglia. Inflammation of the central nervous system (CNS) entails the activation of resident microglia and macroglia, as well as canonical events including recruitment of hematogenous leukocytes and degradation of blood-brain barrier function. Thus defined, inflammation accompanies most neurological disorders, including multiple sclerosis (MS), stroke, neoplasia, trauma and HIV-1-associated dementia, as well as Alzheimer's disease and other primary neurodegenerations. Because GPCRs can serve as drug targets, these results have implications for the understanding and treatment of disease by neurologists and neuroscientists.

Courses

Pharmacology of learning and memory formation.

Hudson de Sousa Buck (FCMSCSP)

Memory is the ability of humans and other animals to retain and subsequently retrieve information. Basically, the mnemonic process comprises three main stages: Encoding or registration (processing and combining of received information); Storage (creation of a permanent record of the encoded information), and; Retrieval or recall (calling back the stored information in response to some cue for use in a process or activity). Another important component of the mnemonic process that may occur is the forgetting of the information. This is a normal process that occurs all the time, but age, stress, emotions, anxiety, high blood pressure are examples of conditions that may lead to abnormal memory loss, resulting in manifestation of dementias like Alzheimer's disease. The neural mechanisms of memory are not totally determined. It is considered that the information is stored in several cortical areas (motor memory/motor cortex; memory/visual cortex; visual etc), hippocampus, dorsal striatum, parahippocampal region,

basal forebrain and cerebellum. The hippocampus is located deep inside the temporal lobe, and it receives inputs from virtually all association areas in the neocortex, including those in the parietal, temporal and frontal lobes, via the adjacent parahippocampal gyrus and entorhinal cortex. Additional inputs come from the amygdala and via a separate pathway, from the cholinergic and other regulatory systems. The dorsal striatum plays a vital role not only in learning new response strategies but also in the inhibition of preexisting strategies when a shift in strategy is required. This system is called as a declarative or relational memory system and appears to be essential for processing information about flexible utilization of the relationship between multiple external cues and events. The dorsal striatum is necessary for the mediation of stimulus response learning. The parahippocampal region receives inputs from widespread secondary or "association" cortical regions and provides the major conduct for hippocampal outputs to the same cortical association areas. This region can play a critical role in recognition memory. Various ions, neurotransmitters and messengers are associated with memory. The ion calcium participates in control of the formation and development of neural structures. Temporal and spatial control of calcium signaling through the neural circuitry involved in learning and memory are fundamental for cognitive capacities. The ion tassium can contribute to learning and memory through the slow after hyperpolarization (sAHP) and Atype potassium channel modification in hippocampal pyramidal neurons. The sAHP amplitude in hippocampal pyramidal neurons can be reduced by signaling pathways triggered by a variety of neurotransmitters, like Acetylcholine which have been implicated in learning and memory. Several findings showed that the

neurotransmitters glutamate, yaminobutyric acid (GABA), acetylcholine, serotonin and dopamine can play a key role in the mnemonic process alone or by association among them. Glutamate, the major excitatory neurotransmitter in the brain, is associated to the modulation of cognitive process by acting on metabotropic glutamate (mGlu) receptors. Also, the positive modulation of AMPA (a-amino-3hydroxyl-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors can potentially enhance cognition by decrease the losses of glutamatergic synapses, promoting synaptic plasticity and increasing the production of tropic factors. Induction of long term potentiation (LTP), a presumed substrate of memory, requires intense depolarization of spine heads which could be induced by the activation of AMPA receptors. The yaminobutyric acid (GABA) is a central inhibitory neurotransmitter and the GABA system is a target for a variety of central pharmacological agents including sedatives, analgesics and anticonvulsants. Studies suggest that GABAergic drugs might impair memory formation through effects on cholinergic systems. Conversely, other findings showed that the GABA receptor agonists muscimol and baclofen enhance memory. Pharmacological data showed that the activation of muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Acetylcholine might enhance the encoding of memory by increasing glutamate neurotransmission and, in this way, stimulating the LTP. Formation of LTP requires a persistent increase in neuronal stimulation with gene transcription and formation of new proteins, which leads to increases in post synaptic density. Acetylcholine might also enhance encoding through its role in increasing theta rhythm oscillations within hippocampal formation. Learning is enhanced when sti-

muli are presented during periods of theta rhythmicity. Serotonin (5-HT) is another neurotransmitter that affects neuronal communication in hippocampus. 5-HT exerts a direct hyperpolarizing influence on principal cells, via 5-HT1 receptors, and indirectly, it facilitates GABA release from local interneurons through 5-HT3 receptors. Dopamine also has a great impact on cognitive processes. In the field of memory and learning studies the mesolimbic dopaminergic and especially the mesolimbic system clearly have received most of the scientific attention. These areas are known to play a crucial role in various cognitive processes. D1, D2, D3 and D4 receptors are all implicated in learning and consolidation of memory. Together with these neurotransmitters, a great variety of neuromodulators are implicated in memory formation. According to this, various attempts to characterize a proper memory pharmacology that could reverse memory decline have been done. The efficacy of memory therapeutics, however, depends on our understanding of the basic mechanisms that characterize memory itself, once memories are thought to be due to lasting synaptic modifications in the brain. Suggested literature: Roberto Lent, Cem Bilhões de Neurônios, 2005; The Internet J of Pharmacol 7(1), 2009.

Neuropharmacological changes along the aging process.

Tânia Araújo Viel USP Memory is the capacity of learn, consolidate and retrieve information that are acquired along life-time. The biological basis for memory formation requires proteins that are common to many living species. What really makes the difference between individuals is all experiences that one lives and which mobilizes those proteins to crate memory traces that are unique to each individual. During the aging process (since conception until elderly) the central nervous system develops in such a manner that

until a determined moment, the organism can increase neuroplasticity with great strength and velocity. After a point (still not determined, and that surely different among persons), these features declines and the capacity of learning new information as well as the recall of consolidated memory starts to decline. However, there are certain types of memory that show no apparent deficit during normal aging. For example, normal elderly do not forget how to write, drive a car, or make a cup of tea, and vocabulary actually increases throughout life. There are some theories that try to explain these phenomena and these theories are related to formation of long term poten-tiation (LTP). LTP is a specific form of plasticity that normally leftovers for a long time, but there is large evidence showing that manipulations to disrupt LTP interfere with memory process and, in this way, it is reasonable to accept that age-related deficits in LTP would contribute to memory deficits along aging. LTP induced neuroplasticity depends on the integrity of neurons rather than their quantity. There is a common misconception that a significant neuronal loss is associated with aging. In fact, careful anatomical studies in humans, monkeys, rats and mice showed that there is no significant loss in the hippocampus areas during normal aging. So, the loss in neuroplasticity is likely to be related to the decline in functionality of LTP. Forma-tion and maintenance of LTP requires cellular and molecular events resulting in induction, expression and consolidation of neuronal plasticity. Induction requires cell depolarization that can be reproduced experi-mentally using theta burst stimulation (TBS, 100 Hz pulses separated by 200 ms intervals). This depolarization engages pro-teins from the cytoesqueleton such as the integrin-actin system. Alterations in actin cytoesqueleton modify spine and postsynaptic

density. A constant release event would result in stable changes of the cytoesqueleton (consolidation), viewed as cross-linking of actin filaments. After that, increases in receptors densities or mobilization of receptors from extra-synaptic areas occur (mainly glutamate receptors). As a result, a stability of excitatory postsynaptic currents is installed. Actin network is constantly modulated by endogenous factors that posi-tively or negatively affect pro-duction and maintenance of stable Among the positive modulators are the neurotrophins brainneurotrophic derived factor (BDNF) and nerve growth factor(NGF) and also some neurotransmitters such as serotonin, endorphins, canabinoids, corticosteroids, and acetylcholine, which also plays a direct role in the formation of memory. In opposite, adenosine was described as a potent negative modulator of LTP. In the elderly, the functionality of LTP can be disrupted as a result of interferences in the induction, expression or consolidation of the process and also as a result in decline of positive modulators or increase in negative modula-tors. However, there is no defined mechanism for neuropharmacological these changes. For instance, a decline in the clearance of extracellular adeno-sine was observed in aged rats which could account for the decline in LTP. Moreover, there is no consensus in the literature about the maintenance or the decrease in the quantity of the neurotrophins BDNF and NGF in the aged brain. In the same way, alteration in neurotransmitter or neuromodulator systems also influence LTP maintenance. In a recent work we observed an increase in memory retention together with an increase in the density of a7 nicotinic acetylcholine receptors in hippocampus of rats with 6 and 12 months old, when compared to 3 month-old animals. In addition, decreases in memory and in density of those receptors were

observed in 18 and 22 monthold rats. Once these receptors are involved with LTP in the hippocampus, these results also suggest an involvement of the cholinergic system with the modulation of memory along the aging process. The degree of LTP disruption during elderly can also be influenced by the quantity and quality of stimulus that is applied to the brain during aging process. In fact, people that are submitted to intellectual activities during their life have less probability to develop dementias. In the same way, young animals that are submitted to environmental enrichment present significant morphological and functional changes in the central nervous system. According to this, in another set of experiments we showed that C57B1/6 mice submitted environmental enrichment (boxes containing toys, activity wheels, wood objects, etc) during 15 months (from 2 to 17 months of age) showed increase in spatial memory evaluated in Barnes maze, when compared with their age-matched control. Surprisingly, mice submitted to the same protocol, but only in more advanced age (from 15 to 17 months of age), also presented improve in spatial memory when compared to non-stimulated aged-matched animals. These observations suggest that the stimulus applied during elderly is as significant and effective as those applied during the youth. Moreover, we can propose that deficits in LTP functionality, i.e., alterations in LTP and its positive or negative modulators, can be reversed by improving life quality with increases in social interactions, physical practices and changes in nutritional intake. Suggested literature: Experim Gerontol 38: 61-9, 2003; Ageing Res Rev 5:255-80, 2006; The Internet J of Pharmacol 7(1), 2009; J Neurosci 29(35):10883-9, 2009

Pharmacological modulation of memory process in neurodegenerative diseases.

Marielza Andrade Nunes (FCMSCSP)

Along aging, the cognitive processes naturally suffer impairments, varying from mild to aggressive forms.

The neurodegenerative diseases have some common symptoms like motor and memory deficits. In general, there are no diagnostic tests that could clarify the presence, absence or the type of the degenerative disease and frequently, the diagnoses are based on clinical symptoms. In addition, brain pathological lesions that could be characteristic for certain diagnosis can be found in different syndromes with cognitive and motor alterations related to elderly. As an example, one of the pathological characteristics of the Alzheimer's disease (AD), the senile plaques. can also be found in Parkinson's disease, although both pathological features have distinct components. In the same way, the presence of Lewy's bodies (consisted of a-synucleins) can be found in Parkinson's disease and also in another kind of dementia (dementia of Lewi's bodies). So, different types of neurodegenerative diseases show similar histopathological characteristics.

From all the dementias, AD is surely one of the most devastating. The basic ultra-structural lesions of Alzheimer's disease are amyloid-β $(A\beta)$ aggregates around the neuronal cell bodies and neurofibrillary tangles inside the cell bodies. Aß peptide derives from amyloid precursor protein which starts an amyloid cascade leading to biochemical alterations that promote the aggregates. Inflammation and glial reaction follows those deposits and also alterations in calcium homeostasis, activation of the synthase glycogen kinase-3 (GSK3) α and β and finally inhibition of cell growth and neuronal death. Some recent works also describe a subsequent activation of caspases and apoptosis and also oxidative stress. Chemical shifts initiated by ultrastructural alterations brains of AD patients leads to a significant loss in cholinergic neurons. In this way, concentration of the neurotransmitter acetylcholine and also function of cholinergic receptors (even muscarinic and nicotinic) are markedly decreased in which has serious consequences to stability of long term potentiation (LTP) and, in this way, to maintenance of memory. Glutamate receptors, which are essential for LTP, are superactivated in this situation because of the low retrieval of glutamate by glial cells at the synaptic gap.

disease Parkinson's is second more common neurodegenerative illness and is characterized by rest muscle tremor and rigidity. There are losses of domapinergic neurons in the substantia nigra and the presence of Lewy's bodies in those neurons. There is also loss in the density of presenilin, a transmembrane protein, alteration in glutamate release and alteration in intracellular calcium metabolism.

Other common dementias in the elderly include: Huntington's disease, where an error in DNA replication results in hyper excitability of glutamate transmission and neuronal death; Frontotemporal dementia. where mutations in the tau protein linked to chromosome 17 leads to neurofibrilary tangles inside neurons and glial cells with no senile plaques; Degenerative disease of Purkinje cells that produce antibodies for cdr2 cytoplasmatic protein, resulting in cellular death; Diffuse disease of Lewy's bodies, where these Lewy's bodies are widely expressed in subpopulations of cortical neurons and lead to the same alterations observed in Parkinson's disease.

Some researchers argued that neurodegenerative diseases characterized by abnormal deposits of proteins should be evaluated together with a continuum of symptoms and not only as individualized entities, once there are common chemical reactions for cell death in these illnesses. In addition, the modified genes in neurodegenerative diseases codify mutant proteins that lead to molecular and physiological abnormalities or discrete but progressive structural alterations that can disrupt transmission in the neuronal circuitry, increasing the vulnerability of neuronal cells.

A better knowledge of the consequences of the chemical alterations for memory and other cognitive functions, in these diseases, may contribute to a more precise diagnosis and to the development of more specific and effective therapies. Suggested literature: Roberto Lent, Cem Bilhões de Neurônios, 2005; *J Alzheimer's Dis.* 2009;18(2):381-400.

Writing a Scientific Paper: theory and practice.

Y. S. Bakhle (Imperial College, UK)

Good scientific results deserve and need good communication. Scientific research has always depended on telling others about your results and you basing experiments on the results of others. So presenting your results in a form that makes them more readily acceptable to Journals and their readers is an essential part of advancing scientific knowledge.

This Course starts with a lecture on scientific writing which is the "Theory" followed by "practical" sessions. In these, MSS supplied by the "students" are discussed in some detail in terms of each component (Title, Abstract, Introduction, Figures), applying the principles and methods outlined in the lecture. I show the scripts marked up with the edits so it is clear what has been changed and then explain and comment on the edit (why was is necessary and how it is "corrected").

These practical sessions *must* be interactive. Students are en-

couraged and need to ask questions about the points raised, the stylistic and language editing and the editing of Figures and Tables. The MSS should be in an advanced state of preparation, i.e. ready to be submitted and some, on past occasions, have been submitted and already rejected. The latter class of MS together with the reviewers' comments can provide an excellent basis of discussing "what went wrong" with the MS. Even factual / data "errors and deficits" can be generated by inadequate explanation or description of experimental work. The topics of the MSS are not important in this context - good communication is as important for explaining ecstasy-induced hyperthermia as it is for relating CYP polymorphism to efficacy of anticancer drugs. The support of the British Pharmacological Society is gratefully acknowledged.

Quantitative and qualitative analysis of drug-receptor interactions.

André Sampaio Pupo (UNESP-Botucatu)

Pharmacologists are constantly required to present in understandable terms the effects of drugs on physiologic systems. This is usually accomplished by applying relatively simple mathematical transformations of drug's doses/concentrations and effects, and confronting them against theoretical backgrounds. The non compliance of the experimental findings to these theoretical backgrounds has led to important advances in the understanding of both the mechanisms of actions of drugs and the physiologic systems upon which the effects of these drugs are investigated. In this context, drugs are valuable tools to elucidate physiologic processes, provided that the effects of these drugs are appropriately interpreted and that all possible mechanisms of actions of these drugs are known. Therefore, misinterpretation of drugs effects or the incomplete knowledge of its mechanisms of actions may be deceiving.

The first class of this course will address theoretical and practical aspects of dose-response curves plotting, such as curve adjustment, requirements of dependent and independent variables, raw versus transformed data and its statistical analysis.

The second class of the course will discuss the actions of competitive antagonists focusing on the importance of the Schild analysis for the appropriate study of this class of drugs. Special attention will be dedicated to the fundamental criteria that must be fulfilled in the construction of Schild's plots and also to operational aspects of the calculation of the slope parameter. In addition, the pharmacological interpretation of slope values different from the predicted theoretical unity will be discussed in light of experimental results.

The final class of the course will focus on the functional analysis of dose-response curves in complex contexts where the pharmacological responses result from multiple mechanisms of actions and its consequences on the estimates of curves slopes and drug's potencies and efficacies.

The proteins kinase and their role in the cellular immune response.

Aristóbolo M. Silva (UFMG) Protein kinases are enzymes that phosphorylate certain acid residues in specific proteins. They are key regulators of cell function by driving the activity, physical interaction and cellular localization of many proteins. The activity of protein kinases is tightly regulated by a number of molecular events such as the turning on or off by phosphorylation, and binding of activator proteins or small molecules. Protein kinases are involved in a myriad of cellular processes, including the immune cell function. In this module, I will present the basic concepts in the protein kinases such as the phosphorylation of amino

acids and proteins by protein kinases, how does phosphorylation regulate activity of proteins, and how the domains within protein structures regulate cell function. Yet, considerable attention will be given to specific protein kinases or groups constituted by them whose activities will determine the major outcomes in the cellular immune response. Activation of immune cells in the immune response is triggered upon detection of stress stimuli that the organism receives. The outcome of these stimuli will be the activation of specific signaling pathways that control the expression regulation of inflammatory genes that are critical to cellular immune response. Therefore, protein kinases are essential cellular components required to modulate these pathways. Among these include the one which leads to the activation of the kinases responsible for nuclear factor kB (NF-kB) transcription factor activity regulation. This pathway involves the formation of NF-kB dimmers as a result of phosphorylation-induced proteolysis mediated by the kinase responsible for NF-kB activation, IkB kinase (IKK). Other important protein kinases constitute a group called a mitogen-activated protein kinases (MAPKs). MAPK pathway is classically composed by a cascade of three kinases: (1) a MAPK that is responsible for the effector functions, (2) the kinase that activates the MAPK (MAP2K phosphorylation MKK), and (3) the kinase that activates the MKK (MAP3K or MEKK), which provides specificity in response to cell surface receptors upon stress recognition. Within the MAPKs family, the stress-activated protein kinase (SAPK) group has been defined as a group of kinases that are activated by stimuli that cause cell stress such as inflammation. SAPKs control the expression of some proinflammatory genes such as those encoding cytokines. Finally, the function of a protein kinase with

a role in viral immune responses will also be presented. Recently, emerging role for this protein kinase has been observed in bacterial and parasitic infections. The double-stranded RNA dependent protein kinase PKR is a host defense enzyme whose expression is up-regulated in response to Interferons (IFNs) and during viral infections. Increased levels of PKR result in its activation by auto-phosphorylation, which in turn phosphorylates the alpha-subunit of eukarvotic translation initiation factor 2 (eIF2-alpha) resulting in the inhibition of global cellular protein synthesis. In summary, the basic concepts in the protein kinases and what is currently known about the kinases aforementioned in their overall contribution to the immune response will be discussed.

Pi3kinase and inflammation.

Remo de Castro Russo (UFMG) Phosphorylated lipids are produced at cellular membranes during signaling events contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K) is to catalyze the production of phosphatidylinositol-3,4,5-trisphosphate in cell survival pathways, regulating gene expression, cell metabolism and higcytoskeletal hlighting rearrangements. The PI3K pathway is implicated in human pathophysiologies including chronic inflammatory diseases and cancer; understanding the intricacies of this pathway may provide new direction for therapeutic intervention.

Based on their primary sequences, the PI3K family is divided into three classes, in which the class I PI3K has been studied most extensively and is the focus of this course. The expression patterns and mode of regulation of class II and III PI3Ks are less understood mechanisms of regulation and substrate specificities. Inside the class I PI3K, class IA subtypes are heterodimers that consist of

a catalytic subunit (p110) and a regulatory subunit (p85). These subtypes are thought to be the major *in vivo* source of PIP3 upon activation of the receptors possessing protein—tyrosine kinase activity or the receptors coupling to Src-type protein—tyrosine kinases.

In mammals, there are multiple isoforms of class IA PI3K. Different genes encode class IA catalytic subunits, referred to as p110 α , p110 β and p1110 δ , while other genes encode the associating regulatory subunits, referred to as p85, represented by five species (p85 α , p85 β , p55 α , p55 γ and p50 α). p85 has two Src homology 2 (SH2) domains, which link the p85-p110 PI3K enzyme complex to tyrosine kinase signaling pathways. Class IA PI3K is activated by most receptors that trigger tyrosine kinase activity. In lymphocytes, this includes antigen receptors, co-stimulatory molecules, adhesion molecules, Toll-like receptors and cytokine receptors. By contrast, the class IB catalytic subunit p110y binds to one of the two non-p85 regulatory subunits, called p101 and p84, and mediates PI3K activity upon G protein-coupled receptors (GPCRs) stimulation. Class IB PI3K is activated by GPCRs including chemokine receptors, bradykinin receptors and sphingosine-1-phosphate (S1P) ceptors.

The acute phosphorylation of Phosphatidylinositol lipids inositol ring D-3 position in response to cell stimulation by growth factors, hormones and chemokines sets in motion are a coordinated set of events leading to cell cycle entry, growth, migration and survival. How does lipid phosphorylation coordinate such complex behavior? Various signaling proteins, including the mitogen-transducing signal C, proteins (protein kinase phosphoinositide-dependent kinases, small G-proteins, MAP mitogen activated protein- kinases), are activated either via their interaction with lipid products of PI3K as through PI3Kdependent phosphorylation of proteins, which have domains that specifically bind to D-3 phosphorylated phosphoinositides. These proteins are located in the cytosol of unstimulated cells, but in response to lipid phosphorylation, accumulate at the plasma membrane because of their ability to associate with the newly formed phosphoinositides. At the membrane, these proteins become activated and initiate various local responses, including polymerization of actin, assembly of signaling complexes and priming of protein kinase cascades.

Most PI3K subunits seem to have a broad tissue distribution, including endothelial cells, fibroblasts and tumor cells, with p110γ and p110δ being highly enriched in leukocytes, playing important roles in chemotaxis, antigen recognition, leukocyte activation and survival. Many chronic inflammatory diseases are associated with deregulated intracellular signal transduction pathways. Resultant pathogenic interactions between immune and lead stromal cells changes in cell activation, proliferation, migratory capacity and cell survival, contributing to inflammation. Increasing efforts are now being made in the design of novel therapeutic compounds to interfere with signaling pathways in inflammatory diseases like rheumatoid arthritis, asthma and cancer. Studies with focus on PI3Ks are providing new insights into the mechanisms and the extent of their involvement in innate immunity and chronic inflammatory diseases, highlighting new potential targets for therapeutic intervention using PI3K inhibitors, opening up potentially opportunities for these drugs.

NFkB and IRF3/7 signaling pathway in the innate immunity.

Daniel Santos Mansur (UFMG) Production of pro-inflammatory mediators such as cytokines and chemokines is intimately dependant on certain transcription factors that are activated after the recognition of pathogens and danger signals. Here we will focus on the kinases involved in signal transduction and activation of the main transcription factors involved in initiating an immune response in an intracellular level: NF-κB and IRFs 3/7.

Recognition of micro-organisms and danger signals by pathogen recognition receptors leading to transcription of proinflammatory cytokines and chemokines and other genes is arguably one of the most important features of innate immunity and is responsible for immediate response to infection and orchestration of an efficient adaptative immune response. Playing a central role in this process is NF-κB (nuclear factor kappa-light-chain-enhancer activated B cells). First related to B cells development, NF-κB is a heterodimer consisted of p50 and p65 that shuttles from cytoplasm to nucleus in its inactive form, bound to the repressor

Let's use the example of one of the most studied PRRs, TLR4, to detail the activation process of NF-κB. LPS is a main component of gram-negative bacterial cell wall and it is the best described PAMP (pathogen associated molecular pattern) that activates TLR4. After TLR4 activation by LPS, mediated by CD14 and MD2, a complex of adaptor molecules is recruited to the plasma membrane, amongst them MyD88 that binds TLR4 through its TIR domain. This recruits IRAKs and the scaffold protein TRAF6 that ultimately activates the master kinase TAK1. TAK1 phosphorylates another kinase, IKKγ (NEMO) that on its turn phosphorylates ΙΚΚβ, in the same complex called IkB kinase (IKK) complex.

Activation of IKK β through NEMO is considered the canonical pathway of NF- κ B activation. IKK β phosphorylates I κ B α that is ubiquitinated, and hence de-

graded by 26S proteasome. The degradation of the repressor $I\kappa B\alpha$ leads to the exposition of a NLS (nuclear localization signal) and leave NF-kB able to bind DNA and play its role in gene transcription.

Another important transcription factor involved in starting innate immunity is IRF3 (interferon regulatory factor 3). IRF3 is activated after the ligation of LPS into the CD14/MD-2/TLR4 as well, or after cytosolic recognition of nucleic acids. The differences from the NF-κB to IRF3 activation start on the adaptor that is recruited to the TIR domain after ligation of LPS to the receptor. TRIF and TRAM are adaptors that are engaged to TLR4 and recruit TRAF3 that complexes two main kinases, IKKepsilon and TBK-1, that are required for IRF3 phosphorylation, dimerization and translocation to the nucleus, where it will regulated transcription of many genes, amongst them type 1 interferons.

During cytosolic nucleic acid recognition different kinds of receptors are recruit and the pathways involved in signal transduction are being studied, but most of them, like RIG-I, that recognizes 5'3pRNA use IKKE or TBK-1 to activate gene transcription mediated through IRF3.

Nucleic acid recognition can engage other transcription factors depending on the cell that is being activated. Importantly, when dendritic cells recognize nucleic acid through TLR7/8 or 9, they are able to induce the dimerization, mediated MyD88 and IRAKs, of IRF7, that is a potent transcriptional factor for type 1 interferon production. Coordinated those two families of transcription factors are of great importance to immediate response to viruses and bacteria and to orchestration of an efficient adaptative immune response.

Symposia

Roles of GRKs and beta-arrestins activities in the regulation of $\beta 2$ adrenergic signaling.

Jamil Assreuy (UFSC)

Introduction: Sepsis is a systemic inflammatory response resulting from the inability of the host to restrict local infection. From the cardiovascular point of view, septic shock is characterized by cardiac collapse and decreased peripheral resistance due to dilatation of systemic resistance vessels induced by nitric oxide (NO) production from inducible NO synthase (NOS-2). protein-coupled receptor (GPCR) kinases (GRKs) are specific kinases interacting with GPCR proteins, inducing receptor phosphorylation and thereby desensitization of GPCR desensitization even in the agonist presence. Therefore, it is conceivable that increased expression of GRKs could increased adrenergic receptor desensitization and in turn reduces cardiovascular responses. Therefore, we hypothesized that the hyporesponsiveness observed in sepsis could result from signal receptor desensitization mediated by a NO-induced GRK increased activity. Methods: Female C57B1/6 mice were submitted to cecal ligation and puncture (CLP). Vascular responsiveness was evaluated in endotheliumbearing aorta rings contracted with phenylephrine (1 μM). Cardiac responsiveness was evaluated in isolated contracted with isoproterenol (1 µM). Aortic ventricle responsiveness was evaluated 6, 12 and 24 h after CLP surgery in the presence or absence of a selective NOS-2 inhibitor 1400W (100 μM). GRK2 expression was analyzed on heart and aorta harvested from sham and CLP treated or not with 1400W (1 mg/kg) 6, 12 and 24 h after CLP by immunofluorescence analysis. All procedures have been approved by the institutional Animal Ethics Committee (Protocol PP003/CEUA). Results: The vascular response to phenylephrine was significantly reduced in aorta rings from septic mice evaluated 6 (55% reduction compared to the response of sham-operated animals), (57%) and 24 (78%) h after CLP. Incubation with 1400W reverted vascular hyporesponsiveness 6 and 12 h after CLP. The cardiac responsiveness to isoproterenol was significantly reduced in ventricles from septic mice evaluated 12 (73%) and 24 (88%) h CLP. Conversely. 1400W treatment prevented the cardiac hyporesponsiveness 12 (70% reduction compared to the response of sham-operated animals) and 24 (80%) h after CLP. Moreover, high expression of GRK2 was detected in aorta 6 (65%), 12 (70%) and 24 (88%) h, and heart of septic mice 12 (52%) and 24 (63%) h after CLP. The treatment of septic mice with 1400W reduced the GRK2 high expression on aorta (75%) and heart (79%). Finally, the pre and post-treatment with 1400W enhanced significantly the survival rate of the septic mice (55%). Discussion: Our findings show that NO, produced mainly by NOS-2 during sepsis seems to activate GRK2, which induces adrenergic receptor desensitization. Increased in the GRK expression is associated with impairment vascular response, contributing to severe cardiovascular hyporesponsiveness observed during septic shock. Moreover, NO synthesis inhibition improves output cardiovascular, and as consequence, enhances the survival of septic mice. Therefore, the results suggest that GRK2 could be a new potential target to sepsis pharmacotherapy. Financial support: CNPq, CAPES, FAPESC.

Therapeutic potential of blocking PI3Kg in inflammation.

Danielle G. Souza, Erica L. Martin, Fernando Q. Cunha, Emilio Hirsch, V. Marco Ranieri, Mauro M. Teixeira

Rationale: Sepsis is a leading cause of ICU-death, characte-

rized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multi-organ damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on PI3Kg signaling in vitro; however the role of this enzyme in polymicrobial sepsis has remained unclear. Objective: This study aimed to determine the specific role of the kinase activity of PI3Kg in the pathogenesis of sepsis and multi-organ damage. PI3Kg wild-type, Methods: knockout and kinase-dead mice were exposed to cecal ligation and perforation-induced sepsis and assessed for survival, pulmonary, hepatic and cardiovascular damage, coagulation derangements, systemic inflammation, bacterial spread and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the of onset sepsis with PI3Kg inhibitor and assessed for survival, neutrophil recruitment and bacterial spread. Measurements and Main Results: Both and pharmaceutical genetic PI3K γ kinase inhibition significantly improved survival, reduced multiorgan damage and limited bacterial decompartmentalization, while modestly effecting systemic inflammation (SIRS). Protection resulted from neutrophil-independent both mechanisms, involving improved cardiovascular function, neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3Kg pharmacological inhibition significantly decreased mortality, improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3Kg as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage, and identifies it as a novel possible therapeutic target.

Antioxidants as anti-inflammatory agents.

Juliano Ferreira (UFSM)

A vast amount of circumstantial evidence implicates reactive oxygen species (ROS) as mediators of inflammation. ROS activate cellular redox-sensitive proteins in target cells involved in mediating inflammatory responses, such as the transcription factor NF-kB that regulates the expression of numerous genes that encode pro-inflammatory molecules, such as some cytokines, adhesion molecules and cyclooxygenase-2. Antioxidants can scavenger ROS and have long been advocated for the treatment of inflammatory diseases. However, the value of antioxidants in the prevention and treatment of such diseases has been questioned. We will review the antiinflammatory effect of antioxidants in pre-clinical models of inflammation and in clinical setting, focusing their potential use in arthritis treatment.

Can antioxidants prevent dyskinesia?

Roberto Frussa-Filho (UNIFESP) The clinical symptoms, the epidemiology and the risk factors of tardive dyskinesia will be briefly characterized. Afterwards, the first pathophysiological hypothesis of the disease - the dopaminergic supersensitivity hypothesis - will be discussed. The pitfalls of the supersensitivity hypothesis and the proposal of the oxidative stress pathophysiological hypothesis will be detailed and followed by both preclinical and clinical evidence supporting the later hypothesis. Finally the potential use of antioxidant agents to prevent tardive dyskinesia and the antioxidant properties of atypical neuroleptics will be discussed.

Quimiocinas e inflamação no sistema nervoso central.

Antonio Lúcio Teixeira (UFMG) As quimiocinas constituem uma grande família de citocinas responsáveis pelo recrutamento de leucócitos, incluindo a migração dos mesmos para locais de inflamação tecidual a partir da circulação sanguínea. As quimiocinas são polipeptídios de 8 a 12 kDa, sendo classificadas nas subfamílias XC, CC, CXC e CX3C conforme o número e a localização dos resíduos de cisteína N-terminais. Nosso grupo de pesquisa vem investigando ativamente os níveis circulantes de quimiocinas e outras moléculas relacionadas com a resposta imune/inflamatória em várias doenças cerebrais humanas, procurando correlacioná-las com parâmetros clínicos. Essa estratégia, além de contribuir para o estudo do envolvimento de moléculas inflamatórias nessas doenças, tem o potencial de identificar candidatos a biomarcadores diagnósticos e/ou prognósticos.

Estudamos os níveis séricos e no líquor de quimiocinas em crianças portadoras de coréia de Sydenham, a manifestação neurológica da febre reumática. Observamos que as quimiocinas MIG/CXCL9 e IP-10/CXCL10, envolvidas no recrutamento de linfócitos de perfil predominantemente Th1, encontravam-se elevadas no soro de pacientes com coréia aguda em relação a controles assintomáticos e pacientes com a forma persistente da coréia (Teixeira et al., 2004). Esses resultados corroboraram a natureza imune-mediada da coréia reumática, questionando se processos autoimunes estariam relacionados à persistência dos sintomas além da fase aguda. Investigamos o envolvimento das quimiocinas na esclerose múltipla, doença inflamatória desmielinizante do sistema nervoso central. De acordo com dados da literatura internacional, observamos que os pacientes em surto (ou seja, com sintomas agudos indicativos da presença de processo inflamatório em atividade) apresentavam simultaneamente níveis elevados de IP-10/CXCL10 e níveis diminuídos de MCP-1/CCL2 no líquor. Demonstramos ainda que, após o tratamento dos pacientes em surto com pulsoterapia com metilprednisolona, ocorria uma

dos níveis de IPgueda 10/CXCL10 e uma elevação de MCP-1/CCL2 no líquor (Moreira et al., 2006). Sugerimos que essas duas quimiocinas poderiam ser utilizadas como marcadores da atividade ou surto da doença. Posteriormente, passamos a explorar o potencial das quimiocinas como biomarcadores em doencas infecto-parasitárias. Demonstramos, por exemplo, que pacientes com esquistossomose apresentavam níveis séricos elevados das quimiocinas MIP-1a/CCL3. MCP-1/CCL2. eotaxina/CCL11 e eotaxina2/CCL24, todas envolvidas recrutamento de células comprometidas com resposta de perfil predominantemente Th2. Quando o líquor de pacientes com esquistossomose medular foi analisado, não se observou aumento dos níveis de quimiocinas, contrariamente ao encontrado, por exemplo, na mielopaassociada ao HTLV-1 (HAM/TSP) (Sousa-Pereira et al., 2006). Interessantemente, observamos que os pacientes portadores de HAM/TSP apresentavam níveis séricos muito elevados das quimiocinas MIG/CXCL9 e IP-10/CXCL10 (envolvidas na resposta Th1) em relação às pacientes infectados com o vírus HTLV-1 sem a mielopatia (Guerreiro et al., 2006). Em contraste, os pacientes com HAM/TSP exibiam níveis circulantes menores de quimiocinas relacionadas ao recrutamento de células de perfil predominante-Th2. como mente 0 MCP-1/CCL2. Em conjunto, esses dados sugerem que as quimiocinas poderiam auxiliar o diagnóstico diferencial das mielopatias e, eventualmente, predizer a conversão de estado de infecção pelo HTLV para HAM/TSP.

Em conclusão, fenômenos inflamatórios estão direta ou indiretamente relacionados com uma série de doenças neurológicas. Assim, determinadas moléculas inflamatórias têm o potencial de serem relevantes biomarcadores dessas doenças. Referências bibliográficas: Guerreiro JB, Santos SB, Morgan DJ, Porto AF, Muniz AL, Ho JL, Teixeira AL, Teixeira MM, Carvalho EM. Levels of serum chemokines discriminate clinical myelopathy associated with human T lymphotropic virus type 1 (HTLV-1)/tropical spastic paraparesis (HAM/TSP) disease from HTLV-1 carrier state. Clin Exp Immunol. 2006; 145: 296-301. Moreira MA, Tilbery CP, Monteiro LP, Teixeira MM, Teixeira AL. Effect of the treatment with methylprednisolone on the cerebrospinal fluid and serum levels of CCL2 and CXCL10 chemokines in patients with active multiple sclerosis. Acta Neurol Scand. 2006;114:109-113.

Sousa-Pereira SR, Teixeira AL, Silva LC, Souza AL, Antunes CM, Teixeira MM, Lambertucci JR. Serum and cerebral spinal fluid levels of chemokines and Th2 cytokines in Schistosoma myeloradiculopathy. mansoni Parasite Immunol. 2006: 28: 473-478. Teixeira AL, Cardoso F, Souza AL, Teixeira MM. Increased serum concentrations of monokine induced by interferongamma/CXCL9 and interferonprotein gamma-inducible 10/CXCL-10 in Sydenham's chorea patients. J Neuroimmunol. 2004;150:157-162.

Neurochemical and behavioral changes after systemic inflammation and sepsis.

Felipe dal Pizzol (UNESC)

It has been demonstrated that septic present both acute and long-term central nervous system dysfunction, including alterations in memory, attention, concentration, and global loss of the cognitive function. However, the mechanisms associated to these alterations are still unclear. Using an animal model of cecal ligation and perforation (CLP) we demonstrated several behavioral changes. mainly memory impairment and depression-like symptoms, in rats. In addition, it was observed that animals submitted to CLP presented decreased mitochondrial respiratory chain activity associated with short-term oxidative

damage. In addition, during sepbrain-produced cytokines and chemokines is an early event and seemed to participate both on CNS dysfunction and blood brain barrier permeability alterations, leading to neuronal death. All these alterations seemed to be implicated in the long-term behavioral changes and neurotransmitters alterations observed in sepsis animal models and septic humans. by CNPq, INCT-Supported Translacional Medicina, FA-PESC.

New vistas for an old friend: Lipoxin A4 as an allosteric endocannabinoid in the brain.

Fabricio Pamplona (UFSC) Lipoxins and endocannabinoids are endogenous eicosanoids that are released on demand following neuronal stimulation or injury. Lipoxin A₄ (LXA₄) activates ALX receptors and has an important role in the resolution of inflammation, but information about its effects on the central nervous system is scarce. The available evidence suggests that LXA4 may influence brain function in a cannabinoid-like fashion, which would imply participation of CB₁ cannabinoid receptors. Although endocannabinoids and lipoxins structural and functional similarities, the pharmacological relationship between them has not yet been described. Hence, this study aimed to investigate the participation of the endocannabinoid system in the central effects of LXA₄.

As an initial behavioral characterization, mice were injected i.c.v. with LXA4 or control evaluated in the cannabinoid tetrad test (catalepsy, locomotion, analgesia and rectal temperature), considered predictive for cannabimimetic activity. These responses were further investigated by injecting the CB₁ receptors antagonist SR141716A or the ALX receptor antagonist BOC-2 before i.c.v. injection of LXA₄. LXA₄ induced catalepsy, hypolocomotion, analgesia and hypothermia in mice. These effects were antagonized by the CB₁ receptor antagonist SR141716A, but not by the ALX receptor antagonist BOC-2. The role of CB₁ receptors on LXA₄ effects was further confirmed in CB1 knockout mice.

Binding of LXA₄ to CB₁ receptors was tested in a competitive binding assay against [3H]SR141716A in mouse brain membranes. The putative pharmacological interaction between LXA₄ and the endocannabinoids was addressed by co-injecting sub-effective doses of anandamide (AEA) or 2-araquidonilglicerol (2-AG) and LXA4. Possible effects of LXA4 on degradation of endocannabinoids were assessed by in vitro assays of the metabolic enzymes of AEA e 2-AG. LXA₄ virtually did not inhibit the binding of [3H]SR141716A, but enhanced the inhibition [3H]SR141716A binding by AEA. LXA₄ potentiated the cataleptic effects of AEA, but not of 2-AG. There was no effect of LXA4 on the endocannabinoid-degrading enzymes FAAH and MAGL.

The present results suggest that LXA₄ exerts central effects via CB₁ cannabinoid receptors and interacts positively with the endocannabinoid AEA. While we did not find any effect of LXA₄ on endocannabinoid metabolism, this study brings evidence that LXA₄ enhances the affinity of AEA for CB₁ receptors through a mechanism of positive allosteric modulation. This is a pioneer finding on the endocannabinoid pharmacology.

Stress and inflammation.

Moises Evandro Bauer (PUCRS) Cytokines have been implicated in the pathophysiology of a series of neuropsychiatric disorders, including major depression, bipolar disorder, schizophrenia, dementia and post-traumatic stress disorder (PTSD). There is growing evidence supporting the link between traumatic stress or depression to a pro-inflammatory profile, with increasing serum concentrations of C-reactive protein, TNF-α, IFN-γ, IL-1β and IL-6. Recently, we observed that

depressed patients with PTSD symptoms had poor memory performance, negatively related to lower brain-derived neurotrophic factor (BDNF) plasma levels. Patients had also significant lower salivary cortisol and DHEAS across the day in parallel with blunted T-cell proliferation and lower IL-2 levels than controls. Patients had also lower RANTES but higher sTNF-R2 levels when compared to controls. The involvement of cytokines in the pathophysiology of depression may involve changes of synaptic transmission, especially in hippocampal-amygdala structures, influencing various aspects of memory related to traumatic memories. The phenomenon of low-grade inflammation could be also involved with increased morbidity in depression. Peripheral administration of pro-inflammatory cytokines or increased levels observed during infections has been associated with changes in patient's behavior known as "sickness behavior". The patient becomes irritable and exhibits increased sleep, depression, fatigue, decreased appetite and sexual drive. Pro-inflammatory cytokines have been implicated in this phenomenon. For instance, depression has been reported in up to 60% of patients with hepatitis C under treatment with IFN-a. The activity of the HPA axis is also enhanced by pro-inflammatory cytokines and may further contribute to pathophysiology of depression.

The impact of stress on body weight gain.

Ruth B.S. Harris, Department of Physiology, Medical College of Georgia.

Stress induces a complex array of physiological, neurological and behavioral responses that allow an animal to respond to a change in its environment. These responses are initiated by corticotrophin releasing factor (CRF) and the urocortins. There are two major subtypes of CRF receptors (CRFR1 and CRFR2) that each mediate specific aspects of

the stress response. Stress may cause weight gain or weight loss, dependent upon the type and severity of stress and an individual's perception of the degree of stress. Humans may gain weight in response to chronic daily stress, but will lose weight in response to a traumatic event. Hamsters gain body fat in following exposure to social stress, whereas food intake and growth are decreased in rats, mice and monkeys living in a stressful environment. We have investigated a rat model in which 3 hours of restraint stress on each of 3 consecutive days results in a chronic down-regulation of body weight. The rats lose weight on the days of restraint and then gain weight at the same rate as their non-stressed controls, but do not compensate for the stress-induced weight loss. Five days after the end of restraint the stressed rats weigh approximately 10-15% less than controls and this weight difference is maintained for at least 90 days. Third ventricle infusions of a CRFR1 antagonist, antalarmin, immediately before restraint do not prevent weight loss on the days of restraint or stress-induced activation of the HPA axis, but do prevent the long-term down-regulation of body weight. There is no evidence of chronic activation of the CRF system in the post-stress period, but rats that have been restrained are hyper-responsive to subsequent mild stressors. We are investigating whether this is associated with a change in threshold or an exaggerated response to stress and whether the increased sensitivity to daily events contributes to the sustained reduction in body weight. (Supported by NIMH grant MH068281)

High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats.

Michella S. Coelho¹, Mariana D. Passadore², Alessandra L. Gasparetti³, Theo Bibancos⁴, Patrícia O. Prada³, Luciene L. Furukawa¹, Luzia N.S.

Furukawa¹, Rosa T. Fukui¹, Dulce E. Casarini^e, Mario J.A. Saad³, Jacqueline Luz², Silvana Chiavegatto⁴, Miriam S. Dolnikoff¹, Joel C. Heimann¹.

¹FM-USP – Nephrology,
²UNIFESP – Physiology

³FCM-UNICAMP

⁴IPq-USP/InCor-HC-FMUSP,

⁵UNIFESP – Internal Medicine

Objective: To get some additional insight on the mechanisms of the effect of salt intake on body weight. Design and methods: Rats were fed a low (LSD), normal (NSD), or high (HSD) salt diet. In a first set, body weight, tail-cuff blood pressure, fasting thyroid-stimulating plasma hormone, triiodothyronine, Lthyroxine, glucose, insulin, and angiotensin II were measured. Angiotensin II content was determined in white and brown adipose tissues. Uncoupling protein 1 expression was measured in brown adipose tissue. In a second set, body weight, food intake, energy balance, and plasma leptin were determined. In a third set of rats, motor activity and body weight were evaluated. Results: Blood pressure increased on HSD. Body similar among weight was groups at weaning, but during adulthood it was lower on HSD and higher on LSD. Food intake, L-thyroxine concentration, uncoupling protein 1 expression and energy expenditure were higher in HSD rats, while nonfasting leptin concentration was lower in these groups compared to NSD and LSD animals. Plasma thyroid-stimulating hormone decreased on both HSD and LSD while plasma glucose and insulin were elevated only on LSD. A decrease in plasma angiotensin II was observed in HSD rats. On LSD, an increase in brown adipose tissue angiotensin II content was associated to decreased uncoupling protein 1 expression and energy expenditure. In this group, a low angiotensin II content in white adipose tissue was also found. Motor activity was not influenced by the dietary salt content. Conclusions: Chronic alteration in salt intake is associated with changes in body weight, food intake, hormonal profile, and energy expenditure and tissue angiotensin II content.

Hypertension, kidney disease, and cardiovascular outcomes in childhood: is there a role for birth weight?

Franco MCP and Sesso R. (UN-IFESP)

Objectives: Low birth weight due to intrauterine growth retardation may be a risk factor for hypertension, renal impairment and cardiovascular disease in the adult life. Our purpose was to investigate whether alterations in C-reactive protein, homocysteine, leptin and NO are present in small for gestational age children and to determine if the levels of these plasma biomarkers are associated with birth weight, vascular function and blood pressure. In addition, we investigated levels of both cystatin C and creatinine, and to evaluate whether there was an association between reduced GFR estimated by these markers and low birth weight. Methods: In this cross-sectional study the concentrations of leptin, homocysteine, C-reactive protein. cystatin, creatinine and NO were measured in 71 children between 8 and 13 years of age. Results: Leptin and homocysteine levels were significantly elevated in children born small for gestational age compared to those with appropriate birth weight. Nevertheless, NO concentration was significantly reduced in small birth weight children and the levels of Creactive protein remained unchanged. There was a significant association between the circulating levels of both NO and homocysteine with vascular function as well as with blood pressure levels in our population. In addition, no differences were found for serum creatinine or GFRcr levels in the birth weight quartiles. There was a significant linear trend of increasing cystatin C (decreasing GFRcys) in the

birth weight lower guartile groups. Systolic blood pressure correlated with plasma levels of cystatin C (r = 0.311, p=0.008) and GFRcys (r = -0.261,p=0.028). Conclusion: As both homocysteine and NO are associated with a risk of cardiovascular disease, it is possible that part of the association of low birth weight with elevated risk for vascular and metabolic disease in later life is mediated by perturbation in pathways for biomarkers. Moreover. lower birth weight is associated with reduced renal function in 10 yr. old children with adequate gestational age.

Vascular reactivity of femoral arteries from diabetic trained rats.

Angelina Zanesco (UNESP-Rio Claro)

The number of diabetic individuals is increasing in the world due to a number of factors such as population growth, increase of lifespan and elderly population as well as increased prevalence of obesity and sedentary lifestyle. Evidences have pointed out that a massive production of ROS is the basis to macro- and micro-vascular disease in diabetic patients that contributes to the loss of endothelial function which is the critical phase of all the vascular diabetes mellitus (DM) complications. Therefore, overproduction of ROS by oxidative stress in response to hyperglycemia in DM leads to severe endothelium dysfunction. lifestyle healthy has been strongly associated with the practice of regular physical activity. Evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Physical exercise prevents or reduces the deleterious effects of pathological conditions such as arterial hypertension, coronary artery disease, atherosclerosis, and diabetes mellitus. This work was to evaluate the effect of exercise training and aminoguanidine treatment (AG) on the femoral vascular responsiveness

from diabetic rats. Methods: Male Wistar rats (180-200 g) divided into: sedentary were (C/SD); diabetic (DB/SD), diabetic trained (DB/TR), diabetic treated with AG (DB/SD-AG) and diabetic trained treated with AG (DB/TR-AG). Diabetes mellitus was induced by streptozotocin (60mg/Kg, i.p.) and run training (RT) consisted of 5 days/week, 60 minutes, 0.9 km/h and 0% grade during 8 weeks. The AG (1g/L) treatment was administrated in the drink-Concentration-rewater. sponse curves for acetylcholine (ACh), sodium nitroprusside (SNP) cromakalin (CRO), phenylephrine (PHE) and thromboxane A₂ analogue (U46619) were obtained in femoral artery. Blood glycated hemoglobin glucose, and β -ketone levels were measured. Results: Glucose was reduced in RT groups (8%) whereas glycated hemoglobin and Bketone levels were not affected compared to DB/SD group. Both potency and Emax for ACh were decreased in DB/SD (6.0±0.1; 62±2%) compared to C/SD (6.8±0.09; 76±2%) while RT or AG treatment partly restored reduction this in DB/TR (6.4±0.06; 68±3%) and DB/SD-AG (6.4±0.07; 69±4%). Combination of RT and AG treatment completely reversed this reduction (6.7±0.02; 74±3%). Neither potency nor Emax were modified for SNP in all groups. Potency for CRO was decreased in all DB groups that it was not restored by RT or AG treatment. No changes were observed for PHE and U46619 in all groups. Conclusion: Endothelium-dependent relaxing responses in femoral artery were restored by combination of RT and AG treatment. Financial Support: FAPESP

Potential application of flavonoids in the therapeutics of diabetes mellitus

Gabriel Forato Anhê (UNICAMP) Aim/hypothesis: A low grade inflammatory response probably accounts for insulin resistance in Type 2 Diabetes Mellitus. Quercetin, a potent anti-inflammatory flavonoid, was described to increase glucose tolerance in streptozotocin-induced diabetic rodents but its benefits to insulin resistance have vielded contradictory results. The present study aimed to determine whether intraperitoneal quercetin treatment increases insulin sensitivity in ob/ob mice and reduces inflammatory response in the skeletal muscle. Methods: L6 myotubes were treated with palmitate or TNFα plus quercetin. Obese ob/ob mice were treated with quercetin for 10 weeks. Cells and muscles were processed for mRNA quantification of GLUT4, TNF α and iNOS and phosphorylation of JNK and IκK. Myotubes were assayed for glucose uptake and nuclear NFtranslocation. Chromatin immunoprecipitation assessed NF-κB p50 binding to Slc2a4 promoter. Results: Ouercetin increased whole body insulin sensitivity and increased GLUT4 expression and decreased JNK phosphorylation, and TNF α and iNOS expression in skeletal muscle. L6 myotubes exposure to quercetin suppressed palmitate-induced upregulation $TNF\alpha$ and iNOS and restored normal levels of GLUT4. In parallel, quercetin suppressed both palmitate- and TNFα-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-κB in myotubes and binding of NF-κB p50 to Slc2a4 promoter in muscle of ob/ob mice were also reduced by quercetin. Conclusions/interpretation: We demonstrate that intraperitoneal quercetin decreases the inflammatory status in skeletal muscle of obese mice. which was mimicked in L6 myotubes. These effects were followed by an improvement in insulin action, suggesting that quercetin is a putative strategy to manage insulin resistance in obesity.

Novel endogenous peptide agonists of cannabinoid receptors.

Lakshmi A. Devi, Prahlad T. Ram^A, Avi Ma'ayan, and Ivone Gomes Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, USA, ^AM. D, Anderson Cancer Center, Texas, U.S.A.

Hemopressin, a 9-residue α -hemoglobin-derived peptide, was previously reported to function as a CB1 cannabinoid receptorselective ligand (Heimann et al., PNAS, 194:20588, 2007). Recent peptidomics analyses of mouse brain extracts using mass spectrometry identified N-terminally extended forms of hemopressin containing either three (Arg-Val-Asp) or two (Val-Asp) additional amino acids. Characterization of these 'longer hemopressins' revealed that they function as CB₁ cannabinoid receptor agonists, in contrast to the 9-residue hemopressin that functions as an antagonist (Gomes et al., FASEB J. 23:3020, 2009). We have recently found that longer hemopressins activate a signal transduction pathway that is distinct from that of classical CB₁R agonists. For example, the longer hemopressins activate G_{alphai} independent signaling leading to a robust mobilization of intracellular Ca+2 levels whereas the classic CB₁R agonists activate Galphai-mediated signaling leading to G-protein activation. To further explore this ligand-directed signaling, we used a combination of reverse phase protein array and graph theory-inspired network analysis. Data from these analyses confirm the notion that longer hemopressins activate a signaling network distinct from that of classic ligands. Further characterization of the hemopressin-activated longer signaling pathway revealed that a number of proteins involved in neurogenesis and neuronal survival are selectively activated indicating that this ligand-directed signaling expands the functional repertoire of CB₁R. Taken together, these results

suggest that CB₁ receptors are involved in the integration of signals from both lipid- and peptide-derived endocannabinoids. Furthermore, the fact that longer hemopressins possess unique agonistic activity at CB1 receptors provides additional tools to understand how the endocannabinoid system is modulated as well as novel candidates to be developed as therapeutics in the treatment of pathologies involving cannabinoid receptors. Supported by NIH grants DA01952: DA08863 (to LAD) and GM071558 to (to AM and LAD).

Therapeutic potential and mechanisms of non-psychotropic phytocannabinoids.

Francisco Silveira Guimarães (USP)

 $(\Delta^9$ - Δ^9 -tetrahydrocannabinol THC) is usually recognized as the major component of Cannabis sativa, responsible for its behavioral and physiological effects. However, the Cannabis other plant contains several cannabinoids with potential therapeutic effects, including Cannabidiol (CBD). Unlike Δ^9 -THC. CBD is devoid of the typical psychotomimetic effects of the plant. Systemic administration of CBD can produce several neuropharmacological effects such as anticonvulsant, neuroprotective, antipsychotic and anxiolytic. Antipsychotic effects have been shown in animal models and in pilot studies with schizophrenic or Parkinson patients with L-Dopa-induced psychosis. Regarding the anxiolytic properties of CBD, they have been demonstrated by several preclinical studies which employed animal models such as the Vogel conflict test, the elevated plusand T-maze, aversive electrical stimulation and conditioned emotional response. Similar to the data obtained in animal models, results from studies in healthy volunteers strongly suggested that CBD has an anxiolytic action. Moreover, CBD is able to attenuate the anxiogenic effects induced by high doses of Δ^9 -THC in humans. We have recently shown that CBD also possess antidepressant and anticompulsive behavior properties. The mechanisms of these effects remain poorly understood due to the multiple pharmacological effects induced by CBD. Although the mechanisms of the antipsychotic effects are unknown, CBD produces a behavioral, clinical and cFos expression profile akin to atypical rather than typical antipsychotics. Recent results obtained in our laboratory suggest that the anxiolytic and antidepressant effects of CBD are mediated by activation of 5HT1A receptors in brain areas such as the dorsolateral periaqueductal gray, bed nucleus of the stria terminalis, hippocampus and the medial prefrontal cortex. However, the anticompulsive effects of CBD seem to be mediated by facilitation of endocannabinoid-mediated neurotransmission. Financial support: FAPESP, CNPq, CAPES

Hemopressin: a new target for drug development.

Camila Squarzoni Dale (IEP-HSL)

Studies on cannabinoid receptors (CB) have raised a new perspective about the therapeutical potential of those receptors on different pathologies such as those with painful origin. In this aspect it has been demonstrated that agonists and antagonists of CB inhibit experimental pain in different models of nociception evaluation. Hemopressin (PVNFKFLSH) is a nonapeptide derived from the a_1 chain of hemoglobin (95-103 fragments) which acts as an inverse agonist of CB1 receptors modulating the signaling mediated by this receptor. Data obtained by our group demonstrates that hemopressin induces antinociception in acute and chronic experimental models. Hemopressin acts by inhibiting nociceptive activation at spinal level, directly on sensory neurons and involves peripheral CB1 receptors on acute models of nociception evaluation. More

interestingly, hemopressin effective in inhibiting pain when administered by either intraintraplantar, or oral routes underscoring its therapeutic potential without affecting locomotors activity or sleeping time of animals indicating and absence of motor abnormalities or sedative effect. More recently we observed that hemopressin does not interfere with swimming time of animals demonstrating that hemopressin does not despair any depressant effects on Central Nervous System. These results represent a demonstration of a peptide ligand for CB1 cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB1 receptors.

Inverse agonism in G-protein coupled receptors (GPCRs) seen in light of classical mechanisms of receptor activation.

Laerte Oliveira (UNIFESP)

GPCRs may be activated constitutionally or by agonist binding thus becoming apt for signal transduction across their seventrans-membrane (7TM) structure. Initiated at the extracellular side of the membrane, the signal can attain the receptor cytosolic domains thereby activating the G-protein system, the phosphorylation and the internalization of receptors. In both constitutional and agonist-mediated mechanisms, activation seems to result from an expansion of the receptor 7TM structure, so extensively that its cytosolic ends become accessible for coupling G-alpha chains and protein kinases. This theory has now been compellingly challenged by recent studies on mechanisms of action for inverse agonism. Identified by their action reverting the constitutive activation of receptors, inverse agonists have recently been shown to bind at the receptor agonist site at the same residue side-chains involved in agonist binding or even in agonist-mediated activation. In fact, inverse agonists should primarily be competitive antagonists of receptors but special features were added to these molecules transforming them into inverse agonists. Consistent interpretation of these findings may be hardly attained considering that the mechanism of GPCR activation is assumed to be generalized all over the receptor structure. Would the inverse agonism be also a reversion of this widespread effect or a parallel event simply annulling the activation? Thus, other hypotheses stressing the importance of interactions localized in the agonist site surroundings to trigger receptor activation, seem useful for discussion of these problems. These are derived from finding such as: (1) only the retinal-free opsin, with an extracellularly-located Lys-to-Glu mutation can activate transducin; (2) special features of agonists as aromatic rings may control the activation of GPCRs by binding of these molecules at the specific site.

Computational chemistry underpinning carbohydrate drug discovery.

Ivone Carvalho (USP)

Computational approaches have been progressively incorporated into the drug discovery process since several in silico methods are available, such as docking, pharmacophore modeling, QSAR (Quantitative Structure-Activity Relationship) and virtual screening. Computational chemistry and informatics can be used to integrate workflow and dataflow for optimum effectiveness in achieving project goals. This integration makes possible fast iterative virtual screening, to effectively prioritize targeted synthesis and screening efforts. In this context, the importance of selecting hit compounds with an appropriate scaffold is crucial for the successful in lead-optimization phase during drug discovery. The ideal scaffold should be both chemically and biologically stable and contain rigidity to enable the molecule to maintain

a controlled three-dimensional presentation of pharmacophores. The advantage of carbohydrates is that they provide a series of scaffolds, as well as mediate many biological processes (cell adhesion, differentiation and growth, signal transduction, protozoa, bacterial and virus infections, and immune response). Amongst the large array of enzymes as therapeutic targets, our group has focused the exploration of TcTS (Trypanosoma cruzi Trans-Sialidase) and q-glucosidase enzymes. cerning TcTS studies, short glycopeptide fragments based on T. cruzi mucin sequences (building blocks), potential drugs based on 1,4-disubstituted 1,2,3-triazole derivatives of galactose and cycpseudo-galactooligosaccharides were synthesized and tested, giving promising results. On the other hand, for studies involving q-glucosidase, a 3D model was built and validated. and further used to perform docking simulations. In addition, pharmacophore modeling and molecular interaction fields were carried out in order to establish the most relevant structural features of both enzyme and inhibitors to drive the synthesis of more active compounds.

Structure-based discovery of novel anti-inflammatory protein kinase inhibitors.

Carlos Alberto Manssour Fraga (UFRJ)

Abstract: NF-κB is a member of a family of cellular transcription factors that are implicated in the inducible expression of various genes involved in immune responses, inflammation, cell survival and cancer. In unstimulated cells, NF-κB is kept in the cytoplasm through interaction with IκB inhibitory proteins. In response to specific external stimuli, including proinflammatory cytokines, viral infection, oxidants, phorbol esters and ultraviolet irradiation, the IkB component of the complex is phosphorylated and degraded, resulting in translocation of NFκB into the nucleus and the induction of target gene transcription. Two protein kinases, IKK-a and IKK-β, phosphorylate IκB proteins and represent a convergence point for most signal transduction pathways leading to NF-κB activation. IKK-β is a key regulator of keratinocyte and epidermal differentiation and suppresses skin cancer, being implicated in some of the antiinflammatory properties commercial drugs, such as aspirin and salicylates. These pharmacological effects indicate that an inhibitor of IKK-B could effectively treat autoimmune and inflammatory disorders such as rheumatoid arthritis, lupus, Crohn's disease and multiple sclerosis.

The discovery and development of small molecule IKK- β modulators is a significant area of research, and several classes of inhibitors have been previously reported. The majority of these inhibitors share a core heterocycle that mimics the adenosine ring of ATP, promoting additional interactions with the target protein.

In this study, we describe the rational design, molecular modeling and pharmacological profile (E)-N-(4-nitrobenzylidene)-2naphthohydrazide (LASSBio-1524), a novel small molecule inhibitor of IκB Kinase-β□ The design based on the IKK-B active site, and a privileged structure template yielded a novel IKK-B inhibitor scaffold with significant selectivity over IKK- α and CHK2, as assessed by a robust kinase assay. For a better understanding of the structural requirements of IKK-β inhibition, molecular dynamics simulations of staurosporine and LASSBio-1524 were performed. The NAH derivative LASSBio-1524 able to suppress arachidonic acid-induced edema formation in a dose-dependent manner, demonstrating an in vivo anti-inflammatory effect. The molecular architecture of this novel, lowmolecular weight IKK-β inhibitor is encouraging for further lead optimization toward the development of innovative anti-inflammatory drug candidates. Financial support: This work was supported by grants and fellowships from INCT-INOFAR (573.564/2008-6), CNPq, FA-PERJ and CAPES.

Atrofia muscular na Insuficiência cardíaca: efeito do treinamento físico aeróbico

Patricia Chakur Brum EEFE-USP – Biodinâmica do Movimento do Corpo Humano

Apesar das alterações no tecido cardíaco serem causais e principais no desenvolvimento da insuficiência cardíaca (IC), vários estudos tem demonstrado que a limitação da capacidade funcional perante o agravamento da IC não está somente relacionada ao grau de disfunção ventricular. A intolerância ao esforco físico, que é amplamente observada em portadores de IC correlaciona-se principalmente às alterações morfo-funcionais da musculatura esquelética, que contribuem para a antecipação da fadiga nesses indivíduos. Dentre essas alterações musculares observase: a) redução da capacidade oxidativa, b) mudanças na composição dos tipos de fibras musculares em direção as fibras glicolíticas de contração rápida e c) atrofia muscular. Além disso, a perda excessiva de massa muscular (caquexia) conjuntamente com o consumo de oxigênio de pico em pacientes com IC grave eram preditores independentes de mortalidade.

Apesar dos avanços terapêuticos e progresso da farmacoterapia da IC, o prognóstico da síndrome ainda merece atenção, pois pacientes apresentam expectativa de vida média de seis anos após diagnóstico. Nesse sentido, terapias adjuvantes que melhorem a qualidade de vida do portador de IC são hoje imprescindíveis.

O treinamento físico aeróbico tem sido preconizado como adjuvante à terapia farmacológica da IC. Dentre seus beneficios destaca-se: a) redução da atividade nervosa simpática, b) melhora da tolerância aos esforços físicos e c) redução da atrofia muscular e melhora da capacidade oxidativa muscular.

Na presente palestra daremos destaque aos beneficios do treinamento físico aeróbico sobre a função e o trofismo da musculatura esquelética em modelo experimental de IC e em pacientes com IC. Daremos destaque aos estudos em andamento do nosso grupo visando o efeito do treinamento físico aeróbico sobre a sinalização de vias proteolíticas como a das calpaínas e o sistema ubiquitina-proteassoma. Apoio financeiro dos estudos: FAPESP (06/61523-7) e CNPq (301519-2008-0)

Sympathetic actions on the skeletal muscle protein metabolism.

Luiz Carlos Navegantes (USP) Skeletal muscle protein mass depends on the balance between synthesis and degradation. The main intracellular proteolytic systems in the skeletal muscles are the lysosomal, the Ca2+-dependent and the ubiquitin-proteasome system (UPS). The majority of intracellular proteins are degraded by the UPS. In all types of atrophying muscle, the UPS is activated, and catalyzes the degradation of the bulk of muscle proteins. In addition, there is a dramatic induction of two muscle-specific ubiquitin-ligases, Atrogin-1 and MuRF-1, whose induction occurs before the onset of muscle weight loss and which is necessary for rapid atrophy. The key mediators of this catabolic response during atrophy are the FoxO (Forkhead box O) family of transcription factors, whose activity is suppressed during growth by phosphorylation by AKT. We have been studying the mechanisms through which the rates of these different proteolytic components are regulated by hormonal, nutritional and neural factors. Among the factors that regulate proteolysis, the Sympathetic Nervous System (SNS) has an important physiological role. We have previously shown that SNS, through the activation of beta-2 and beta-3 adrenoceptors and

cAMP signaling cascade, exerts an anabolic effect on muscle protein metabolism by inhibiting the activity of the Ca²⁺-dependent proteolytic system. In the present study, we present evidences that the beta-2 adrenergic agonist clenbuterol (CB) in vivo induces hypertrophy and reduces UPS activity in skeletal muscles from normal rats. In addition, CB suppresses the transcriptional upregulation of the ubiquitin ligases Atrogin-1 and MuRF-1 in muscles from mice under atrophic conditions. This effect is independent of PGC-1α (Proliferator-Activated Receptor-γ Coactivator-1α) since it has been also observed in muscles from PGC-1a musclespecific knock-out animals. The CB-induced reduction of atrophy-related genes occurs through the activation of AKT, which leads to phosphorylation of FOXO3a. The anti-proteolytic effect of CB on UPS is probably mediated through the cAMP pathway since elevated cAMP levels induced by cAMP-phosphodiesterase inhibitors in vitro suppresses the UPS activity, the levels of ubiquitin-conjugated proteins and the mRNA and protein levels of Atrogin-1 transcripts in muscles from normal rats and in C2C12 mvotubes treated with dexametasone. These data suggest that stimulation of beta-2 adrenoceptors, through the activation of cAMP and AKT signaling pathways, inhibit ubiquitin-proteasome proteolysis bv increasing FOXO3a phosphorylation and suppressing Atrogin-1 mRNA expression in skeletal muscle from rodents. The understanding of the precise mechanisms by which endogenous catecholamines promote muscle anabolic effects may bring new perspectives for efficient treatment of muscle-wasting conditions.

New function of the kallikreinkinin system in the muscular atrophy.

Parreiras-e-Silva, LT¹, Pires-Oliveira M², Lira EC³, Reis RI¹, dos Santos GA¹, Pesquero JB⁴, Ket-

telhut IC¹, Navegantes LCC³, Gomes MD¹, Godinho RO², Costa-Neto CM¹ ¹FMRP-USP – Biochemistry and Immunology, ²UNIFESP – Pharmacology, ³FMRP-USP – Physiology, ⁴UNIFESP – Biophysics

⁴UNIFESP - Biophysics Introduction: Skeletal muscle fibers loose mass due to catabolic signals such as those driven by pro-inflammatory molecules and malnutrition. Ultimately those effects are mainly mediated by the ubiquitin-proteasome system (UPS), but also by other proteolytic systems. Muscle proteolysis is increased during several pathologies such as cancer, diabetes and sepsis, in some cases leading to severe muscular atrophy. Objective: Since the B₁ and B₂ kinin receptors are involved in inflammatory responses, we decided to analyze the participation of the kallikrein-kinin system (KKS) in three different in vivo models of muscle atrophy, and also in vitro using primary culture and C2C12 cells. Methods: Wistar rats, Balb-C mice and C57BL/6 wild-type and kinin B₁ receptor knockout mice were gonadectomized for 2, 7, 15 and 30 days to induce levator ani (LA) muscle atrophy. In another atrophy model, C57BL/6 mice were fasted for 2 days and gastrocnemius muscles were collected. In the third model, sepsis was induced in young Wistar rats by the cecal ligation and puncture (CLP) method, which afterwards also causes muscle atrophy. After process-sing, samples from different muscles were analyzed concerning the expression of transcripts for kinin B₁ and B₂ receptors, atrogin-1 and MuRF-1 (key enzymes of UPS), TNF-a and IL-6 (pro-inflammatory cytokines with known catabolic roles in muscular tissue), IGF-1 anabolic peptide), and LC3 and cathepsin L (involved in lisosomal proteolysis). All experiments were conducted in accordance with the local Animal Care and Use Committee (FMRP-USP 046/2006). Concerning the in vitro approach, to analyze the

molecular effects of activation of the KKS we treated cultured myotubes obtained from all the hindlimb muscles from young Wistar rats and developed from the murine C2C12 cell line, with the agonists of kinin receptors, bradykinin (BK) and des-Arg⁹-BK (DABK). After sample processing, the expression levels of targeted transcripts were analyzed by conventional quantitative or PCR, as well as western blotting analyses. RESULTS: We show that mRNA expression levels of atrogin-1 and MuRF-1 were increased in the muscles collected from animals submitted to the three in vivo models. The kinin B₁ receptor mRNA was also increased in the same muscles and the B₂ receptor mRNA was increased in the murine fasting model. Moreover, LA muscles from B₁ receptor knocktout mice did not induce MuRF-1 transcript expression and exhibited a slight increase in relative mass. Expression of LC3 mRNA was induced to a lower extent when compared to the WT animals. Western blotting analyses showed an increase in ERK 1/2 phosphorylation in LA muscles from Balb-C mice treated with the kinin B₂ receptor antagonist HOE-140, suggesting a possible mechanism for KKS role in regulating muscle mass in physiological situations. In vitro, we showed that the treatment of C2C12 myotubes with the B₁ receptor agonist, DABK, induced a decrease in myotubes diameter after 12 to 48 hours (5 and 15%, respectively). Transcript expression analysis showed an increase of the inflammatory cytokines, TNF-a and IL-6, and the lisosomal protease cathepsin L. It was also shown a decrease in IGF-1 mRNA expression. In myotubes from primary culture of rat hindlimbs, activation of the B₂ receptor induced an increase in MuRF-1 mRNA and in atrogin-1 protein levels. Activation of both receptors induced an increase in reactive oxygen species (ROS) production until 1 hour following stimulus. DIS-

CUSSION: Our data evidence the participation of KKS in muscle mass control, and therefore its involvement in muscular atrophy, mainly via UPS and lisosomal proteolytic systems. Finally, our results also suggest possible mechanisms by which kinins regulate such process, as follows: i) activation of NF-kB, since B₁ receptor stimulation in cultures of myotubes induced an increase in inflammatory cytokines and ROS production, and B₁-knockout mice did not induce MuRF-1 mRNA expression in LA of castrated animals; ii) regulation of MAPK pathway, since the antagonism of the B2 receptor in mice induced an increase of ERK 1/2 phosphorylation levels in LA. Also, the increase of MuRF-1 and atrogin-1 levels in myotubes concomitantly with the increase of ROS production induced by BK, suggest a possible activation of p38 MAPK; iii) regulation of PI3K/Akt signaling pathway, since B₁-knockout mice showed a lower increase in LC3 mRNA expression in LA muscle, and DABK decreased IGF-1 expression (which activates PI3K/AKt) in cultured myotubes, and finally because BK induced atrogin-1 protein expression in rat myotubes, which expression is known to be regulated by Akt/Foxo. Financial support: FAPESP, CAPES, CNPq, FAEPA.

Excitation-secretion coupling in Leydig cells.

Wamberto A. Varanda (USP) Leydig cells are responsible for the synthesis and secretion of testosterone, processes controlled by the hypophysis via the Luteinizing Hormone (LH). Binding of LH to a G Protein Coupled Receptor in the plasma membrane of Leydig cells, results in a primary increase in cAMP and in the intracellular calcium concentration ([Ca²⁺]_i). Both processes are known to be essential for testosterone production. The question we ask here is: how events occurring in the plasma membrane are linked to and to what extend determine changes in the intracellular calcium concentration? Using the whole cell variation of the patch clamp technique we show the presence of T-type calcium currents which can be enhanced by treatment of the cells with LH. This effect is also evident when the cells are exposed to dibutiryl-cAMP. The electrohysiological properties of the currents and immunofluorescence experiments support the conclusion that the calcium currents are carried by $Ca_v3.2$ (α_{1H}) channels. Measurements of intracellular calcium activity with the fluorescent dye Fluo3 and confocal microscopy, show that the changes in [Ca²⁺]_i induced by LH require the presence of extracellular calcium and do not occur when Ca_v3.2 are blocked by nickel. Using specific antibodies we show that Leydig cells express the tree isoforms of both ryanodine receptors (RYRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs). The RYRs and IP3Rs are functional, as judged both from their activation by caffeine and IP3 and block by ryanodine and 2-APB, respectively. Both types of receptors are involved in a calcium-induced calcium-release mechanism (CICR), which amplthe initial Ca²⁺ influx through plasma membrane Ttype calcium channels. Nevertheless, our results show that RYRs are the principal players involved in the release of Ca2+ from the endoplasmic reticulum. This assumption is supported mainly by the fact that the global Ca²⁺ changes evoked by LH are readily blocked by 100 µM ryanodine but not by 2-APB or xestospongin C. Both calcium currents and transients are predominantly modulated by PKA but PKC also participates in the process. Finally, we will show that blockage of the ryanodine receptors, but not IP3 receptors, inhibits both the hormone-induced [Ca²⁺]_i transients and the subsequent testosterone production by the Levdig cells. These results not only broaden our understanding of the role played by calcium in Leydig cells

but also show, for the first time, that ryanodine receptors play a crucial role in determining testosterone secretion by the testis. Financial Support: FAPESP, CNPq, FAEPA.

Nucleoplasmic calcium regulates cell through legumain

Andrade VA[‡], Guerra MT[§], Jardim, CA[†], Melo FM[†], Silva Jr WA[¶], Ortega MJ[‡] Robert ME^{*}, Nathanson MH[§], Leite MF^{†,δ} [‡]UFMG – Biochemistry and Immunology, [†]UFMG – Physiology and Biophysics, [¶]FMRP-USP – Genetics and Center for Cell Based Therapy, ^{*}Yale University – Pathology, [§]School of Medicine New Haven – Internal Medicine/Cell Biology, ^δHoward Hughes Medical Institute.

Nucleoplasmic Ca²⁺ regulates cell growth, but the proteins through which this occurs are unknown. To investigate this, we used Rapid Subtraction Hybridization to subtract genes in SKHep1 liver cells expressing the Ca²⁺ buffer protein parvalbumin (PV) targeted to the nucleus, from genes in cells expressing a mutated form of nuclear-targeted PV which has one of two Ca²⁺-binding site inactivated. The subtraction permitted selection of genes whose expression was affected by a small alteration in nuclear Ca2+ concentration. The asparaginyl endopeptidase legumain (LGMN) was identified by this assay and differential expression of this gene was validated by Real Time-PCR. When Ca2+ was buffered in the nucleus of SKHep1 cells, LGMN mRNA was decreased by 97%, and decreased expression at the protein level was observed by immunoblot and immunofluorescence. Knockdown of LGMN by siRNA decreased proliferation of SKHep1 cells by ~50% as measured both by BrdU uptake and mitotic index. A significant reduction in the fraction of cells in G2/M phase was seen as well. This was associated with increases in expression of cyclins A and E. Furthermore, LGMN expression was increased in hepatocellular carcinoma cells relative to normal hepatocytes in the same tissue specimens. These findings identify a new role for LGMN and provide evidence that nuclear Ca²⁺ signals regulate cell proliferation in part through modulation of LGMN expression, and suggest that increased expression of LGMN may be involved in carcinogenesis in the liver.

Physiological and pathological aspects of brain mitochondrial Ca²⁺ transport.

Roger Frigério Castilho (UN-ICAMP)

Changes in mitochondrial integrity, reactive oxygen species release and Ca2+ handling are proposed to be involved in the pathogenesis of many neurological disorders. In mitochondria, Ca2+ influx occurs electrophoretically in response to the internally negative membrane potential generated by the respiratory chain or ATP hydrolysis by the reverse activity of the mitochondrial ATP synthase. The channel that promotes mito-chondrial Ca^{2+} uptake is inhibited by ruthenium red and has low affinity for Ca2+, presenting a $K_{\rm m}$ of 10-30 μM . Ca²⁺ efflux from mitochondria involves two pathways. The Na+-dependent pathway, presented mainly in excitable tissue, which exchanges one Ca2+ ion for two Na+ ions; while the ubiquitous Na+-independent pathway exchanges Ca²⁺ for 2H⁺. Under steady-state, mitochondrial Ca²⁺ uptake typically maintains extramitochondrial Ca^{2+} ions in the 0.5 to 1.0 μM range. The main function of mitochondrial Ca²⁺ uptake appears to be the regulation of matrix Ca²⁺ concentrations, which stimulate the activity of regulatory enzymes of the Krebs cycle.

Energy metabolism defects in neurons cause increases in intracellular Ca²⁺ levels, either by directly impairing Ca²⁺ removal systems or due to *N*-methyl-D-aspartate (NMDA) receptor activation. Under these conditions, the mitochondrion is the main organelle responsible for Ca²⁺ sequestration, a required

step in NMDA-induced neuro-toxicity. Excessive mitochondrial Ca²⁺ uptake and oxidative stress can cause non-selective inner mitochondrial membrane permeabilization, known as the permeability transition (MPT). MPT results in mitochondrial Ca²⁺ release, organellar swelling, release of mitochondrial apoptogenic factors such as cytochrome *c* and loss of inner membrane potential and ATP synthesis. MPT can result both in necrosis and apoptosis.

We have recently shown that the addition of the succinate dehydrogenase (SDH) inhibitor 3-nitropropionic (3NP) to Ca²⁺-loaded brain mitochondria leads to MPT (Maciel et al., 2004). Brain and heart mitochondria were generally more sensitive to 3NP and Ca2+-induced MPT than mitochondria from liver and kidney. In addition, 3NP resulted in more pronounced MPT in striatal mitochondria than in cortical or cerebellar organelles (Mirandola et al., 2010). We propose that the increased susceptibility of the striatum to 3NP-induced neurodegeneration in rats systemically treated with this toxin may be partially explained by its susceptibility to MPT.

The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of MPT. We studied the inhibitory effects of adenine nucleotides on brain MPT (Saito and Castilho, 2010). We observed that ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, halfmaximal inhibitory values (K_i) of 4.5 µM and 98 µM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia / reoxygenation did not interfere

with the inhibitory effect of ADP on Ca2+-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT. Our results suggest that ADP can have an important protective role against Ca2+-induced MPT and tissue damage under conditions brain ischemia and hypoglycemia. Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90: 1025-1035.

Mirandola SR, Melo DR, Saito A, Castilho RF (2010) 3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions. *J Neurosci Res* 88: 630-639. Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. *Neurochem Res* (in press). Supported by FAPESP and CNPq.

Dopamine turnover following administration of 7-nitroindazole to rats with L-DOPA-induced dyskinesia. E.A. Del Bel^{1,2}, R.S. Szawka¹, F.E. Padovan-Neto^{1,2}, C.A. da-Silva¹, J.A. Anselmo-Franci¹. ¹FORP-MEF - Physiology and ²FMRP- Neurology

Purpose of the study: Administration of L-3,4-dihydroxyphenylalanine (L-DOPA) enhances dopamine synthesis and release in dopamine-deafferented striatum leading to improvements in parkinsonian symptoms. Longterm use of L-DOPA leads to side-effects such as unwanted movements or dyskinesias. We have recently described that nitric oxide synthase inhibition is able to reduce L-DOPA-induced dyskinesias in experimental Parkinson (3). This result suggests that controlling nitric oxide production may be useful for the prevention of dyskinesias. Because the mechanism of this effect is poorly understood, it is of interest to determine whether nitric oxide synthase inhibitor 7nitroindazole would affect neurochemical responses. Therefore, we determined the effects of 7nitroindazole in striatal levels of catecholamines and indoleamines in 6-hydroxydopamine (6-OHDA) lesioned rats with Linduced dyskinesias. **DOPA** Methods. Male Wistar rats with unilateral 6-OHDA lesions of the medial forebrain bundle or sham animals (2, n=5-7/group) were treated chronically (21 days) with L-DOPA (30mg/kg) to ininvoluntary duce abnormal movements (AIMs) (1). Comparisons between 6-OHDA lesioned (dyskinetic) and sham (nondyskinetic) L-DOPA-treated rats, receiving either saline or 7-nitroindazole, were then carried out with regard to striatal levels of dopamine (DA), DOPAC (DA metabolite), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA, a 5-HT metabolite), measured by HPLC analyses. Since it has been shown that the nigrostriatal DA system has functional and neurochemical asymmetry, the measurements were made separately in each side. Results: L-DOPA induced AIMs in all 6-OHDA lesioned rats, which was attenuated by 7-6-OHDA lesion nitroindazole. induced a decrease in DA and DOPAC levels in the striatum ipsilateral to lesion (85.2 and 90%, respectively, F1,19=87.3 p<0.001); 7-nitroindazole treatment decreased DOPAC in both striatum (28-30%). 7-nitroindazole treatment per se increased level in sham-L-DOPA treated rats (42-60%). The content of 5-HT decreased in the ipsilateral striatum (28.2% of control); however 7-nitroindazole increased it in the contralateral one (24.5%). 5-HIAA decreased in the striatum ipsilateral to lesion (35.6%) and 7-nitroindazole treatment did not change lesion effect. DOPAC/DA ratio regarded as a measure of DA turnover. was significantly higher (391%,

F1,19=4.38, p=0.05) in the ipsilateral striatum of dyskinetic rats. This effects was prevented by 7-nitroindazole. 5HIAA/5HT ratio increased in the striatum ipsilateral (119%) but did not 7-nitroindazole change after treatment. Conclusion: Confirming previous results (3), treatment with 7-nitroindazole attenuated L-DOPA-induced dyskinesias in animals with unilateral striatal 6-OHDA lesions. Dyskinetic animals show an increase in dopamine metabolism as expressed by increased DO-PAC/DA levels. This increase in dopamine turnover could serve to maintain dopamine levels in the dopamine-depleted striatum and may account for the therapeutic benefit of L-DOPA. However, it may also be related to the dyskinesias induced by this drug. Interestingly, 7-nitroindazole, a preferential neuronal nitric oxide synthase, was able to prevent both this turnover increase and attenuate the druginduced dyskinesias. Together these results suggest that nitric oxide production could be important for the occurrence of L-DOPA-induced dyskinesias. Fi-FAPESP, support: nancial FAPESP/INSERM, CNPq, CAPES/COFECUB. Reference(s): (1) Cenci MA, Lee CS Björklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA Eur J Neurosci 10: 2694-2706. (2) Gomes MZ, Raisman-Vozari R, Del Bel EA (2008) A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway Brain Res 1203:160-169. (3) Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel EA. (2009) Nitric oxide synthase inhibition attenuates 1-DOPA-induced dyskinesias in a rodent model of Parkinson's disease Neuroscience 159(3):927-935.

Brain in movement: the role of physical exercise in Parkinson's disease.

Aderbal S. Aguiar-Jr. (UFSC) Parkinson's disease (PD) is considered a motor neurodegenerative disease, and its diagnosis is based on cardinal motor signs. In addition, subtle cognitive impairments are present even during the PD earlier phases that includes attentional and working memory deficits. Dopamine-replacement therapy has dominated the treatment of PD since the early 1960s and although the currently approved antiparkinsonian agents offer effective relief of the motor deficits, they have not been found to alleviate the underlying dopaminergic neuron degeneration, and drug efficacy is gradually lost. In addition, this approach did not shows modifying-disease effects to cognitive dysfunction. Thus, the management of non-motor symptoms of PD remains a challenge. A putative strategy is the physical exercise, because there are several evidences showing benefits to aged and diseased brain. Clinical studies have been inconsistent to show exercise-induced reverse symptoms, which can be largely attributed to methodological issues. On the other hand, recent findings have shown that exercise programs can present beneficial effects in neurointoxicant rodent models of PD such as 6hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, no consistent evidence for the potential of exercise to prevent cognitive impairments in animal models of PD has to date been documented. Here, we evaluated the neuroprotective properties of exercise in ameliorate animal models of basal ganglia dysfunction, such as 6-OHDA-induced motor dysfunction and MPTP-induced olfactory and cognitive dysfunction. Five to 6-month-old male C57BL/6 mice were maintained under controlled environment (UFSC ethical board number

23080.019001/2009-27). Initially, mice were assigned to two groups: untrained and runners. Animals were exercised with a treadmill ergometer during 6 weeks, where blood lactate levels were weekly monitored to control exercise intensity. Five animals per groups were sacrificed 48h after the exercise program ending to analyze skeletal muscle mitochondrial function. Moreover, we separated animal in two additional groups: 6-OHDA and MPTP treated mice. The animals were treated with the neurotoxins 6-OHDA (4 µg), injected into the right midstriatum (anterior 0.4, lateral 1.8, ventral 3.5), or MPTP (65 mg/kg) that was administered intranasally (Prediger et al, Neurotox Res, 17, 114, 2010) or their respective vehicle 48 h after the end of physical program. Blood lactate levels of trained mice remained within the moderate levels of intensity effort. Moreover, the activity of citrate synthase and complex I of skeletal muscle isolated mitochondria were increased in relation to sedentary controls. In the striatal 6-OHDA model, apomorphine treatment (0.6 mg/kg, s.c.) induced a progressive rotation in sedentary animals, which was not observed in the 6-OHDA trained mice, suggesting a reduced dopamine receptors sensitization in trained mice. We assessed rota rod performance of mice and verified a per se effect in the exercised mice, while 6-OHDA sedentary mice presented poor latency to fall than saline treated animals. Moreover, exercise was also able to ameliorate the rota rod performance of exercised mice impaired by the 6-OHDA treatment. We also evaluated the role of physical exercise on basal ganglia-dependent stimulus-response learning and memory. The intranasally MPTP treatment induces poor freezing response retrieval in the tone fear conditioning tasks and the exercise presented not per se effect. However, we observed that 6 weeks of moderate running exercise ameliorate this

impairment in the exercise MPTP-treated group. Moreover, MPTP-treated groups showed dopamine receptor sensitization as indicated by a marked increase in climbing behavior induced by a low dose of apomorphine (0.2 mg/kg, s.c.) that was prevented by exercise. Indeed, exercise prevented the catalepsy induced by haloperidol (0.32 mg/kg, i.p.) in MPTPtreated mice. These effects seem not be related to neuroprotective actions of exercise since it did not prevent the MPTP-induced reduction in the levels of dopamine and tyrosine hydroxylase enzyme in the striatum. How-MPTP-treated ever, exercised mice presented decreased striatal DA turnover in comparison to sedentary MPTP-treated mice. Our evidences are coherent with this statement due to modifying-disease effects duced by exercise. Taken together, the present findings suggest that physical exercise can reduce behavioral alterations associated to dopamine receptors imbalance in neurointoxicant models of PD and that this response is an association between neuroprotection and post-Financial synaptic changes. support: FAPESC, CAPES and CNPa.

Behavioral and neurochemical alterations induced by intranasal administration of MPTP, an experimental model of Parkinson's disease, in mice with genetic deletion of the heparin binding growth factors Pleiotrophin and Midkine.

Rita Raisman-Vozari¹, Argelia Esperanza Rojas-Mayorquin¹, Elaine Del Bel², Raymond Mongeau³, Laurence Lanfumey³ Rui D. S. Prediger⁴. ¹INSERM-UMR, ²FORP-USP, ³INSERM – Neuropsychopharmacologie,

⁴UFSC - Farmacologia

The "olfactory vector hypothesis" postulates that Parkinson's disease (PD) may be caused or catalyzed by agents that enter the brain via the olfactory mucosa. We have recently demonstrated that rats treated with intranasal

(i.n.) infusion of 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin largely used to modeling PD in primates and rodents, suffer from progressive signs of PD that are correlated with time-dependent degeneration in dopaminergic neurons. On the other hand, previous studies have suggested that heparin binding growth factors, such as Midkine (Mdk), might play an important role in nigrostriatal system development and in the compensatory mechanisms that take place in PD. Here, we employed Mdk knockout mice (Mdk-Ko) to evaluate the relevance of such heparin binding growth factor in the olfactory, emotional, learning and memory, and motor deficits induced by a single i.n. administration of MPTP (1 mg/nostril). Mimicking the clinical condition, mice exhibited an early disruption in olfactory discrimination ability and social recognition memory during the first two weeks after MPTP treatment. These responses were not due to locomotor impairments, since no behavioral alterations in the activity chambers were observed in the first post-treatment week. Interestingly, Mdk-Ko mice have a poorer performance in the olfactory discrimination and social recognition tests, but not in the elevated plus-maze, than wildtype controls. Of high importance, selective locomotor impairments evaluated in activity chambers were observed in Mdk-Ko mice at 3 weeks after i.n. MPTP infusion.

The present results suggest, for the first time, the role of Mdk in olfactory and short-term social memory processes in rodents. Moreover, our findings reinforce the involvement of Mdk in compensatory mechanisms in PD, indicating that the genetic deletion of Mdk confers increased susceptibility to behavioral deficits induced by MPTP in mice.

Molecular approaches to the study of natural products modulating nociception.

Marilia Zaluar P. Guimarães (UFRJ)

Natural products have been fundamental tools in the understanding of how pain occurs and also served as medicines to treat pain for a long time. For instance, acetylsalicylic acid extracted from the willow bark was important to confirm the role of prostaglandins in sensitizing nociceptors. More recently, capsaicin, the pungent ingredient in chili peppers, was used to clone TRPV1, a channel responsible for the transduction of several painful stimuli. Upon activation by vanilloids, protons, endogenous lipids or high temperatures, TRPV1 causes nociceptor excitation via cation influx. In addition, TRPV1 has been linked to some toxins and venoms produced by animals and plants that act as repellents to predators, such as resiniferatoxin, spider toxins and jellyfish venom. Other toxins are likely to produce burning pain via activation of TRPV1. One good candidate is the bee venom, responsible for thousands envenomations a year in Brazil. Previous works have suggested that some of the bee venom-caused inflammatory hypersensitivity is of neurogenic origin. In particular, authors have suggested the involvement of TRPV1 channels in some of the bee venom effects. However, this was not clearly demonstrated on the molecular level. We decided to investigate this matter using Xenopus oocytes expressing TRPV1 and electrophysiology performing experiments. Preliminary data suggest that crude bee venom is able to activate TRPV1 channels. These initial experiments indicate that crude venom might contain a toxin or toxins capable of activating TRPV1. Further experiments will help clarify which constituents are responsible for modulating TRPV1 and cause burning pain sensation.

Cell and tissue responses to melittin and its antagonist.

Camila El-Kik (UFRJ)

Apis mellifera bee venom is composed by a mixture of many components some as proteins with different molecular weight but the toxic effect of the venom is attributed mainly the presence of melittin. Venom components present pharmacologic and allergic effects producing located edema and pain, erythema caused by the increase of the vascular permeability. Melittin is a cytotoxic protein, that induces cardiotoxic hemolysis, and myotoxic effects because the property of decreased superficial tension of plasma membrane, acting like a natural detergent. This component has a potent destructive action on biological membranes mainly when acts synergic with the venom phospolipase A2 in the membrane phospholipids acting as diffusion factor. Recently studies have reported that suramin, a polysulfonated naphtylurea derivative, is an enzymatic inhibitor that prevents the effects produced by polications present in the snake venom and some isolated myotoxins that act like A. mellifera components. We evaluated the ability of suramin to antagonize the vascular permeability, edema and citotoxicity in endothelial cells induced by Apis mellifera crude venom and by melittin.

The plasma extravasation was assessed by using a i.v. injection of a visual marker, Evans blue and measured the absorbance which was express in arbitrary units. Intradermical injection of bee venom or melittin induced intense plasma extravasation in the local injection and was compared with control animals that received only PSS injection. The effect of crude venom and melliwas reduced when was post preincubated. pre and treated with suramin. Paw edema induced by injection of bee venom or mellitin was inhibited by suramin treatments. Primary cultures of microvascular endothelial cells were obtained from rat cremaster muscle microcirculation according to a method described previously. Cells culture were incubated per 1 hour with venom or mellitin alone or with suramin. After incubation sobrenadant was collected and LDH measured. Data show that low concentrations of suramin inhibited completely the cytotoxic activity of bee venom and mellitin effects. These data suggest that the toxic effect of bee venom is due the melittin action and that suramin has a protective effect against damage caused by bee venom components.

Author Index

41 1 ~ DO	05.060	41 1 5 1 777	06.071
Abrahão RQ	05.062	Alves-do-Prado W	06.071
Abrantes-Lima KD	04.088	Amado CAB	09.094
Abreu A	06.046	Amaral DCG	03.036
Abreu LC	02.004	Amaral FA	02.013, 02.025,
Abreu ML	06.053, 06.059		02.034, 02.042,
Acco A	09.021		04.077, 04.083,
Accorsi-Mendonça D	02.002		05.043
Acedo SC	04.102, 07.007,	Amaral LM	06.021
Accub SC	07.009	Amaral SS	04.048
Adaalai INC			
Adachi LNS	02.056	Amaral TAS	09.012
Agra IKR	09.070	Ambiel CR	06.071
Agra MF	09.095, 09.100	Ambrósio SR	06.008
Aguiar DC	03.026	Amemiya RM	04.023, 04.040
Aguiar JA	05.008, 09.049	Amêndola R	04.064
Aguiar-Jr AS	02.005	Amorim LEO	06.078
Aido-Machado R	01.007	Amorim VR	05.048, 09.053
Aires RD	06.065	Andrade CAF	06.079, 07.013
Albertin M	02.039	Andrade EL	02.006, 02.055
Albuquerque AAS	06.033	Andrade FA	06.045
Albuquerque MS	02.042, 02.052	Andrade JMM	09.080
Albuquerque RAF	05.008	Andrade M F	09.014
Alencar JL	03.019	Andrade SF	09.102
Alencar NMN	04.080, 09.047,	Andrade SP	04.132
	09.056	Andrade WS	11.024
Alencar VTL	04.120	Andrade-Lopes AL	01.022
Alexandre-Moreira MS	05.015	Andre E	05.058, 09.019,
Almança CCJ	09.067, 09.075		09.020, 09.039
Almeida BG	04.132	Andreatini R	02.035, 03.022
Almeida CB	02.017	Androwiki ACD	06.063, 06.066,
Almeida CJ	04.090		06.068
Almeida CLF	09.036, 11.017	Angelis CD	09.009
Almeida FRC	05.033, 05.034,	Anhê GF	04.116
innerda i no	05.035, 07.001	Anjos-Valotta EA	04.056, 04.127,
Almeida IP	09.005, 09.053	rinjos valotta Eri	04.128
Almeida JM	11.006	Anselmo A	04.130
Almeida MG	10.003	Anteguera AAC	04.068
Almeida PE	04.090, 04.091,	Antoniali C	06.022, 06.050,
	04.106		06.067
Almeida PVG	03.024	Antonialli CS	09.003
Almeida RA	09.047	Antonio CB	02.011, 02.015,
Almeida RN	03.018, 03.019		03.016
Almeida RT	05.027	Antunes E	04.057, 04.105,
Almendra LR	04.013		04.107, 04.108,
Alvarez L	05.016		04.111, 04.116,
Alverne SM	09.056		06.058, 08.003,
Alves AS	04.099, 05.021		08.006
Alves CD	06.053	Antunes F	05.007
Alves DR	05.016	Antunes KM	04.090
	11.006		
Alves DS		Antunes-Rodrigues J	06.079
Alves FHF	02.008, 02.012,	Aquino PGV	09.092
41 P'11 P.C	03.014	Arakawa NS	05.029
Alves Filho FC	06.001, 06.002	Arantes ACS	04.018, 04.128
Alves Filho JC	04.064, 04.073,	Araújo AJ	09.050, 10.007,
	04.129, 05.051		10.009, 10.018
Alves LA	11.022, 11.030	Araújo AV	06.014, 06.044
Alves R	02.010	Araújo EB	09.030
Alves RS	06.036, 06.059	Araújo Júnior JX	09.092
	•	~	

Araújo LP	04.089	Barbosa Jr F	11.002
Araújo MS	02.052	Barbosa Neto O	01.002
•			
Araújo MV	09.107	Barbosa-Souza V	01.020
Araújo RC	04.079	Barcellos-de-Souza P	01.031
	04.024		
Araújo Souza PS		Barcelos L	04.132
Arcanjo LCG	04.074	Barcelos RCS	02.057
Arifa RDN	04.006, 08.008	Baretta IP	03.022
Ariza D	02.035	Barja Fidalgo TC	01.008, 01.014,
Arruda AMM	11.013		01.015, 01.029,
Arruda Junior WB	03.023		01.031, 04.064,
Arruda LLM	04.066, 04.076		09.022, 10.016
Arruda MA	01.029, 01.031	Barnabé GF	02.027
Arruda MCC	04.077	Baroni S	04.066, 04.076
Arruda MSP	06.047, 09.015	Barreiro EJ	01.009, 01.016,
Assis RC	09.053		01.017, 02.009,
Assreuy J	04.032, 04.042,		02.011, 03.016,
	06.027, 06.038,		05.007, 05.010,
	06.046, 06.075		05.015, 05.030,
A +11 - TAT			
Athayde ML	09.068		05.031, 05.053,
Athayde-Filho PF	03.003		06.007, 06.020,
Audi EA	02.017		06.043, 07.003,
Ávila RMD	05.023		11.019
Ávila TV	04.006, 04.011,	Barreto E	09.070
	04.044, 04.082,	Barreto LRF	01.005
	08.008	Barreto MAA	04.131
Ayres MCC	05.033, 05.035,	Barros HMT	02.046, 03.029
3	09.098	Barroso LC	04.043
A 1 D.I			
Azeredo FJ	11.019	Basílio IJLD	09.100
Azeredo JA	09.086	Basso LA	01.019, 08.004
Azeredo LA	02.046	Bastos GNT	04.029
Azevedo SM	09.089	Bastos IVGA	05.063
Baggio CH	09.013, 09.039,	Bastos MVR	05.077
88	09.041, 09.088	Bastos NFP	10.014
D 111 TTG			
Bakhle YS	05.041	Bastos-Rodrigues L	11.026
Bakker-Abreu I	04.014, 04.053,	Batalhão ME	06.004
	04.135	Batassini C	02.015
Balarini CM	06.018	Batista LM	09.024, 09.027,
Baldaia MA	03.031		09.035, 09.036,
Poldo C	04.099		09.048, 09.052,
Baldo C			
Ballejo G	06.001, 06.002		09.058, 11.017
Balsanelli LS	06.075	Battastini AMO	02.024, 03.020,
Baltazar LM	08.008		04.133, 05.032,
Balter AS	06.034, 06.041		10.002
Bandeira-Melo C	04.014, 04.053,	Becari C	01.038, 02.033,
	04.135		06.061
Banin TM	06.052	Beduschi MG	04.062, 09.026
Baracho NCV	06.054, 06.088,	Begnami AF	09.018
zaraciic i.e.			
	06.089, 09.074,	Beijamini V	11.006, 11.009
	09.105, 11.034	Beiral HJV	06.019
Baraldi T	02.025, 02.042,	Beirith A	09.106
	02.052	Belinati KD	09.061
Barato RC	06.060	Belini L	04.058
Barberato LC	01.004	Bello PHP	06.010, 06.013
Barbiero JK	02.035	Belo VA	11.007, 11.015,
Barbosa ALR	04.103, 07.006		11.023
Barbosa AM	09.064	Bem AXC	05.073, 07.011
Barbosa CRN	07.011	Bem G	09.104, 09.016
Barbosa Filho JM	05.077	Bendhack LM	06.014, 06.023,
Barbosa JPC	06.053, 06.059		06.024, 06.032,
	,		50.02,

	06.007.06.044	D 1 1 1 CM	04.007.04.070
	06.035, 06.044,	Bolonheis SM	04.037, 04.078,
	06.045, 06.064,		04.087, 09.061
	06.067	Bolzani V	01.016, 02.009
Benetti LR	04.098, 04.104	Bonagamba LGH	02.002, 06.044
Benjamim CF	04.012, 04.013,	Bonan CD	02.056
	04.025, 04.059,	Bonaventura D	06.003, 06.008,
	04.069, 04.071,		06.067
	04.081, 04.084,	Bonet IJM	05.001
	04.124, 06.028	Bonfim NM	04.066
Bento AF	02.006, 02.018,	Bonventi W	01.020
	02.055	Borges FR	05.072
Bento-Silva MT	07.001, 07.002,	Borges RS	04.012
Bonto Sirva III	07.012	Borja GP	04.046
Benvegnú DM	02.057	Borlini PG	11.006
Bérenger ALR	09.103	Borsoi M	02.015
_			
Bergantin LB	01.022	Bortolatto CF	04.036
Bernabé DG	10.006	Botelho A	09.069
Bernardes DSV	06.088	Both FL	09.028
Bernardes PTT	04.010, 04.134	Boufleur N	02.057
Bersani-Amado CA	04.066, 04.068,	Bouskela E	09.022
	04.076, 09.042,	Bozza PT	04.014, 04.053,
	09.043, 09.051,		04.090, 04.091,
	09.054, 09.097		04.106, 04.124
Bertini R	04.132, 05.068	Bozzo TA	05.025
Bertoglio LJ	03.012	Bracht A	09.021
Besnard AG	04.063	Braedon B	01.013
Bettero GM	09.004	Braga A	09.079
Betti AH	02.011, 02.015,	Braga FC	09.044
	03.016, 09.004,	Braga Neto MB	01.005
	09.079	Braga-Vilela AS	11.008
Betto MRB	04.047	Branco AMC	04.013, 04.081,
Bezerra CGP	08.002, 08.005	Branco nine	09.057, 09.084
Bezerra DP	09.050	Brandão-Costa RM	10.016
Bezerra MM	04.112, 05.008,	Brayner MMB	09.030
Bezella WIWI	09.049		
D DDC		Breithaupt-Faloppa AC	04.040, 04.052,
Bezerra RDS	05.048	D ' ~ MDDI	04.094
Bhattacharyya J	09.100	Brigagão MRPL	04.001
Biagi C	11.023	Brigatte P	05.055
Biasoli ER	10.006	Brighente IMC	09.106
Biazzotto JC	06.024, 06.032,	Brito BG	11.006
	06.044	Brito FCF	05.023, 06.034,
Biegelmeyer R	09.080		06.076, 06.078
Bilheiro RP	09.093	Brito GAC	01.005, 04.112,
Binda NS	02.048, 05.075		04.120, 04.121,
Biojone C	03.005, 03.006,		05.042, 07.011,
3	03.015		09.047
Biscaro MDA	03.032	Brito HO	04.092
Bispo Júnior W	05.015	Brito SMRC	05.048, 09.098
Bitencourt CS	04.008	Brito-Júnior EC	07.004
Bitencourt FS	09.056	Britto LRG	04.099, 05.021
Bittencourt JC	02.054	Brogliato AR	04.013, 04.081
Boaventura GT	09.104	Brosco MC	03.025
Boemer G	02.005	Bruder-Nascimento T	06.056
Bóf ER	06.027, 06.038	Brügger PG	09.074
Boffo MA	06.055	Brum Junior L	11.019
Bogo MR	02.056	Bruni FM	09.025
Boldrini LC	08.002, 08.005	Brunini T	03.033, 03.035,
Boligon AA	09.068		06.010

Burk HS 02.013, 02.042, Candido PM 10.010 02.034, 02.042, Candido PM 10.010 02.052 02.052 Canetix C 04.132 04.059, 04.059, 04.059, 04.051 09.064 09.013, 09.020, Canetix C 04.025, 04.059, 04.010, 09.031, 09.020, Canto RFS 11.005 06.028 09.039, 09.088 Caparroz-Assef SM 09.051 0	D 1 110	00 012 00 005	O 1' LOM	04.010
Bürger ME 02,057, 09,059 Canetti C 04,025, 04,059, 04,059, 04,059, 04,069, 04,110, 04,069, 04,110, 04,069, 04,110, 04,069, 04,110, 04,069, 04,110, 09,033, 09,088 Caparroz-Assef SM 09,051, 09,053 Busnardo C 02,030, 02,051 Capellini VK 06,033 Buzzi FC 04,117 Capellini VK 06,033 Cabrini DA 04,009, 04,118, 09,046, 09,062, 09,077, 09,081, 09,078, 09,079	Buck HS	02.013, 02.025,	Candico LCM	04.019
Binger ME 09.054 09.054 09.064 09.064 09.064 09.064 09.0628 09.0628 09.039 09.088 Caparroz-Assef SM 09.051 09.039 09.088 Caparroz-Assef SM 09.051 09.039 09.088 Caparroz-Assef SM 09.051 09.062 09.077 09.081 06.065 09.077 09.081 06.065 09.077 09.081 09.090 09.090 09.062 09.077 09.081 09.090 09.090 09.062 09.077 09.081 09.090 09.006 09.090 09.006 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.006 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.007 09.0062 09.0062 09.007 09.0062 09.00				
Bulgarelli 09.064 O4.069, 04.110, 06.028 Burci LM 09.013, 09.020, 09.039, 09.088 Caparroz-Assef SM 09.031, 09.020 Busnardo C 02.030, 02.051 Capartroz-Assef SM 09.051 Buzzi FC 04.117 Capettini UK 06.033 Cabrini DA 04.009, 04.118, 09.046, 09.062, 09.077, 09.081, 09.077, 09.081, 09.077, 09.081, 09.077, 09.081, 09.077, 09.081, 09.090, 09.106 Cara DC 04.048 Câceres A 05.016 Cardos MHM 04.016 Cadean SMSC 09.021 Cardoso MHM 04.001 Caetano AL 02.013, 02.025, 02.034, 02.042 Cardoso PF 10.010 0.066 Calieti G 03.029 Cardoso PB 09.059 Calieti G 03.029 Cardoso RDR 05.006 Calii-Elias S 09.075 Carneiro LU 09.075 Calii-Elias S 09.072 Carneiro LU 09.075 Caliixto JB 02.006, 02.018, 02.018, 02.018, 02.018 Carneiro FS 01.012 Calixto JB 02.055, 03.011, 02.022 Carneiro EC 06.004 Calixto JB 02.055, 03.013, 02.02				
Burachi C 04,130 09,013, 09,020, 09,038 Caparroz-Assef SM 09,051 Busnardo C 02,030, 02,051 Capellini VK 06,033 Buzzi FC 04,117 Cabrini DA 04,009, 04,118, 09,046, 09,062, 09,077, 09,081, 09,004, 09,016 Cara DC 04,004, 09,016 Cacres A 05,016 Cardelli NJA 04,016 Cadena SMSC 09,021 Cardoso MHM 04,011 Caetano AL 02,013, 02.025, 02,034, 02,042 Cardoso PF 10,010 Caletti G 03,029 Cardoso RDR 05,009 Calletti G 05,003, 00,000 Carneiro FS 01,012 Callixto JB 02,006, 02,018, 02,005 Carneiro FS 01,012 Callixto JB 02,006, 02,018, 02,005 Carneiro FS 01,012 Callixto MC 04,105, 05,007, 08,004, 10,005 Carneiro FC 05,004 Callixto MC 04,105, 05,007, 08,004, 10,005 Carneiro FC 05,004 Callera GE 06,014 Carregaro V 04,075 Callera GE 06,014 Carreira EU 05,061 Callera GE 06,014 Carreira EU 05,061 Callera GE 06,014 Carreira EU 05,061 Camacho F 02,033 Carrettiero DC 02,021 Camacho F 02,033 Carrettiero DC 02,021 Camacho F 02,033 Carrettiero DC 02,021 Camaro GC 11,024 Carvalho AA 09,098 Camara GC 11,024 Carvalho AA 09,098 Camara GC 11,024 Carvalho AB 06,022 Camaro DHJ 06,066 06,068 Carvalho FDGF 08,006 Camaro DHJ 06,066 06,068 Carvalho JSM 11,012,11,014 Campos DHJ 06,056 Carvalho JSM 11,012,11,014 Campos DHJ 06,056 Carvalho JSM 09,016 09,104 Campos DHJ 06,056 Carvalho JSM 09,016 09,104 Campos DHJ 06,056 06,004 07,004 07			Canetti C	
Burci LM				
Busnardo C 02.030, 09.088 Caparroz-Assef SM 09.051				
Busarido C 02,030, 02,051 Capellini VK 06,033	Burci LM			
Buzzi PC			Caparroz-Assef SM	09.051
Cabrini DA	Busnardo C	02.030, 02.051	Capellini VK	06.033
09,046,09.062, 09.077,09.081, 09.077,09.081, 09.090,09.106	Buzzi FC		Capettini LSA	06.047, 06.051,
Cáceres A	Cabrini DA	04.009, 04.118,		06.065
Cáceres A 09,090, 09,106 Cara DC 04,048 Cadena SMSC 09,021 Cardoso MHM 04,116 Cadena SMSC 09,021 Cardoso PF 10,010 Catetin G 02,034,02,042 Cardoso PM 09,059 Caletti G 03,029 Cardoso RDR 05,009 Callerios AS 09,086 Carioletti GH 06,069 Caliari MV 05,041 Carme PL 04,012 Calisto JB 02,006, 02,018 Carneiro LU 09,075 Calixto JB 02,006, 02,018 Carneiro LU 09,075 Calixto JB 02,006, 02,018 Carneiro LU 09,075 Calixto JB 02,006, 02,018 Carneiro PC 11,015 Calixto JB 02,006, 05,079 Carneiro PC 11,015 Calixto MC 04,105,005 Carniba DM 01,025,02,049 Calixto MC 04,105,04-111 Carrearo JLF 09,080 Callera GE 06,014 Carrearo JLF 09,080 Callera GE 06,014 Carrearo JLF 09,080		09.046, 09.062,	Capistrano Júnior VL	11.020, 11.021,
Cacres A 05.016 Cardelii NJA 04.116 Caetana SMSC 09.021 Cardoso MHM 04.001 Caetano AL 02.034, 02.042 Cardoso PF 10.010 Caletti G 03.029 Cardoso RDR 09.059 Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carme PL 04.012 Calisto JB 02.006, 02.018, 02.018, 02.055, 03.011, 02.006 Carneiro PC 11.015 Calixto JB 02.055, 03.011, 02.018, 03.006, 02.018, 05.079, 08.004, 10.005 Carnio BC 06.004 Calixto MC 04.105, 04.111 Carreiro VL 05.068 Callizto MC 04.105, 04.111 Carregaro V 04.075 Callera GE 06.014 Carreiro JN 09.099 Callou BF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carretiero DC 02.021 Camaro F 10.02, 033 Carvalno AAF 06.022 Camara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.02		09.077, 09.081,	_	11.025
Cacres A 05.016 Cardelii NJA 04.116 Caetana SMSC 09.021 Cardoso MHM 04.001 Caetano AL 02.034, 02.042 Cardoso PF 10.010 Caletti G 03.029 Cardoso RDR 09.059 Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carme PL 04.012 Calisto JB 02.006, 02.018, 02.018, 02.055, 03.011, 02.006 Carneiro PC 11.015 Calixto JB 02.055, 03.011, 02.018, 03.006, 02.018, 05.079, 08.004, 10.005 Carnio BC 06.004 Calixto MC 04.105, 04.111 Carreiro VL 05.068 Callizto MC 04.105, 04.111 Carregaro V 04.075 Callera GE 06.014 Carreiro JN 09.099 Callou BF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carretiero DC 02.021 Camaro F 10.02, 033 Carvalno AAF 06.022 Camara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.02		09.090, 09.106	Cara DC	04.048
Cadena SMSC 09.021 Cardoso PF 10.010 Caetano AL 02.013, 02.025, 02.042 Cardoso PF 10.010 Caletti G 03.029 Cardoso RDR 05.009 Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carmo PL 04.012 Calisto JB 09.072 Carneiro FS 01.012 Calixto JB 02.006, 02.018, Carneiro PC 11.015 04.017, 05.003, O4.011, O4.017, 05.003, O5.056, 05.079, Carnio EC 06.004 08.004, 10.005 Carolina DM 01.025, 02.049 Calixto MC 04.105, 04.111 Carreiro JLF 09.80 Callea GE 06.014 Carreira EU 05.061 Callou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carreiro JN 09.099 Camacho F 02.033 Carvalho AA 09.098 Camarão GC 11.024 Carvalho AA 09.098 Camarão GC 11.024 Carvalho AF 06.066, 06.068 Carvalho FL 0	Cáceres A		Cardelli NJA	04.116
Caetano AL 02.013, 02.025, 02.025, 02.042 Cardoso PM 09.059 Caletti G 03.029 Cardoso RDR 05.009 Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carmo PL 04.012 Caliire SS 09.072 Carmeiro FS 01.012 Calixto JB 02.006, 02.018, 02.035, 03.011, 02.0055, 03.011, 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carneiro LU 09.075 Calixto MC 04.017, 05.003, 02.018 Carmeiro VL 05.068 Calixto MC 04.105, 04.111 Carracro JLF 09.080 Callera GE 06.014 Carregaro V 04.075 Callou BF 04.065 Carreira EU 05.061 Calou BF 04.065 Carreiro JN 09.099 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camara NOS 04.079, 09.043 Carvalho AA 09.098 Camarão GC 11.024 Carvalho CE 04.046 Camargo L 06.066, 06.068 Carvalho CE 04.046 Cama				
Caletti G 02.034, 02.042 Cardoso PM 09.059 Calheiros AS 09.086 Cardoso RDR 05.009 Caliari MV 05.041 Carmo PL 04.012 Calii-Elias S 09.072 Carmeiro FS 01.012 Calixto JB 02.006, 02.018, 03.011, 04.017, 05.003, 03.011 Carmeiro PC 11.015 04.017, 05.003, 03.011, 04.017, 05.003, 03.011 Carmeiro PC 11.015 05.056, 05.079, 08.004, 10.005 Carolina DM 01.025, 02.049 Calixto MC 04.105, 04.111 Carregaro V 04.075 Callera GE 06.014 Carregaro V 04.075 Callou BF 04.065 Carretiro JN 09.099 Calvo TR 10.010 Carretiro DC 02.021 Camacho F 02.033 Carva-Neves C 04.045, 06.028 Camara NOS 04.079, 09.043 Carvalho AA 09.098 Câmara OC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho AF 06.028 Camargo E 04.020, 09.096 Carvalho				
Caletti G 03.029 Cardoso RDR 05.009 Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carmo PL 04.012 Caliir Bilas S 09.072 Carneiro FS 01.012 Calixto JB 02.006, 02.018, 02.018, 02.018, 02.018, 02.018 Carneiro LU 09.075 Calixto JB 02.006, 02.018, 02.018, 02.018, 02.019 Carneiro PC 11.015 04.017, 05.003, 05.056, 05.079, 04.011 Carneiro PC 11.015 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carnoina DM 01.025, 02.049 Calixto MC 04.105, 04.111 Carraio EC 06.004 Calleda B 05.073 Carregaro V 04.075 Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreira EU 05.061 Calou IBF 04.065 Carreira EU 05.061 Camacho F 02.033 Carvalho AA 09.098 Camarini R 04.079, 09.094 Carvalho AAF 06.022 Camaraño GC 11.024 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Calheiros AS 09.086 Carioletti GH 06.069 Caliari MV 05.041 Carme PL 04.012 Calil-Elias S 09.072 Carneiro FS 01.012 Calixto JB 02.006, 02.018, 02.018, 04.017, 05.003, 04.017, 05.003, 05.056, 05.079, 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carneiro VL 05.068 Calixto MC 04.105, 04.111 Carroina DM 01.025, 02.049 Callado RB 05.073 Carregaro V 04.075 Callou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carretiro DC 02.021 Camacho F 02.033 Carvalno AA 09.099 Camara NOS 04.079, 09.043 Carvalho AA 09.098 Camara NOS 04.079, 09.096 Carvalho AF 06.022 Camargo E 04.020, 09.096 Carvalho FDGF 08.006 Camargo L 01.030, 06.063, 02.024 Carvalho FL 03.003, 03.018 Camarji R 04.131 Carvalho FDGF 08.006 Campi P 04.0020, 04.026, 02.024 Carvalho JB 02.029	Caletti G			
Caliari MV 05.041 Carme PL 04.012 Calil-Elias S 09.072 Carmeiro FS 01.012 Calixto JB 02.006, 02.018, Carneiro LU 09.075 Calixto JB 02.055, 03.011, Carneiro PC 11.015 04.017, 05.003, O5.056, 05.079, Carnie EC 06.004 08.004, 10.005 Carnio EC 06.004 Calixto MC 04.105, 04.111 Carraro JLF 09.080 Callea GB 05.073 Carregaro V 04.075 Callea GE 06.014 Carreiro JN 09.099 Calvo TR 10.010 Carretiro DC 02.021 Camacho F 02.033 Carvalno AA 09.098 Camardo GF 02.033 Carvalno AA 09.098 Camara NOS 04.079, 09.043 Carvalho AA 09.098 Camarão GC 11.024 Carvalho AA 05.077 Camargo E 04.020, 09.096 Carvalho FLC 04.046 Camargo E 04.020, 09.096 Carvalho FL 03.003, 03.018 Campi P 04.022 Carvalho FLD <td></td> <td></td> <td></td> <td></td>				
Calil-Elias S 09.072 Carneiro FS 01.012 Calixto JB 02.006, 02.018, 02.015, 03.011, 02.055, 03.011, 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carneiro PC 11.015 Calixto MC 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carnio EC 06.004 Calixto MC 04.105, 04.111 Carrano JLF 09.080 Calledo RB 05.073 Carregaro V 04.075 Callera GE 06.014 Carreiro JN 09.099 Calvo TR 10.010 Carrettiero DC 02.021 Camacho F 02.033 Carvalho AA 09.098 Camara NOS 04.079, 09.043 Carvalho AAF 06.022 Camara NOS 04.079, 09.043 Carvalho AAF 06.022 Camargo E 04.020, 09.096 Carvalho AF 06.022 Camargo LL 01.030, 06.063, Carvalho FDGF 08.006 Campesatto-Mella E 09.107 Carvalho FLDQ 11.012, 11.014 Campes DW 04.022, 04.026, Carvalho JGB 02.010, 02.028, Campi PS 08.008 Carvalho JGB <t< td=""><td></td><td></td><td></td><td></td></t<>				
Calixto JB 02.005, 03.011, 02.005, 03.011, 04.017, 05.003, 04.017, 05.003, 05.056, 05.079, 08.004, 10.005 Carneiro PC 11.015 Calixto MC 04.017, 05.003, 05.003, 05.056, 05.079, 08.004, 10.005 Carnio EC 06.004 Calixto MC 04.105, 04.111 Carraro JLF 09.080 Callado RB 05.073 Carregaro V 04.075 Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carretiero DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camardo GC 04.079, 09.043 Carvalho AA 09.098 Camarão GC 11.024 Carvalho AMR 05.077 Camargo L 04.020, 09.096 Carvalho ED 04.046 Camargo L 01.030, 06.063, Carvalho FDGF 08.006 Camarin R 04.131 Carvalho FLDQ 11.012, 11.014 Campi PS 08.008 Carvalho JS 09.018 Campi PS 08.008 Carvalho JB 02.010, 02.028, 04.026, 04.027 <				
02.055, 03.011, 04.017, 05.003, Carneiro PC 11.015 05.068 05.056, 05.079, 08.004, 10.005 Carolina DM 01.025, 02.049 08.004, 10.005 Carolina DM 01.025, 02.049 09.080 01.025, 04.111 Carraro JLF 09.080 0				
O4.017, 05.003,	Calixio JB			
Calixto MC				
Calixto MC 08.004, 10.005 Carolina DM 01.025, 02.049 Calixto MC 04.105, 04.111 Carraro JLF 09.080 Callea GB 05.073 Carreira V 04.075 Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carreiro DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camarjo LL 01.030, 06.063, Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campes Auto-Mella E 09.107 Carvalho JGB 02.010, 02.028, 02.029 Campi P 04.002, 04.026, Oalthough JGB 02.010, 02.028, 02.029 Campos DHJ 06.056 Carvalho JGB				
Calixto MC 04.105, 04.111 Carraro JLF 09.080 Callado RB 05.073 Carregaro V 04.075 Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carrettiero DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camardo BSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho FDGF 08.006 Camargo LL 01.030, 06.063, Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JGB 02.010, 02.028, Campi PS 04.002, 04.026, 04.026 Carvalho JGB 02.010, 02.028, Campi PS 08.008 Carvalho JS 05.055 Campos DU 06.056 Carvalho JS 0				
Callado RB 05.073 Carregaro V 04.075 Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carrettiero DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AA 09.098 Câmarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho FDGF 08.006 Camargo LL 01.030, 06.063, 06.068 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JGB 02.010, 02.028, 02.029 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JS 05.055 Campos DHJ 06.056<	0.11 . 110			
Callera GE 06.014 Carreira EU 05.061 Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carrettiero DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho EE 04.046 Camargo LL 01.030, 06.063, 06.063 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campi P 04.002, 04.026, 06.027 Carvalho JGB 02.010, 02.028, 02.09 Campi P 04.002, 04.026, 06.063 Carvalho JGB 02.010, 02.028, 02.09 Campi PS 08.008 Carvalho JGB 02.010, 02.028, 02.09 Campi PS 08.008 Carvalho JSM 11.012, 11.014 Campos DH 06.056 Carvalho JSM 11.012, 11.014 Campos DH				
Calou IBF 04.065 Carreiro JN 09.099 Calvo TR 10.010 Carretire DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho FDGF 08.006 Camargo LL 01.030, 06.063, 02.004 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos DH 06.056 Carvalho JS 05.055 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.014 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 09.014 Campos RMM 01.019,				
Calvo TR 10.010 Carrettiero DC 02.021 Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JS 05.055 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos RM 01.019, 01.023, 06.063, 10.001 03.011, 04.016, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04.074, 04				
Camacho F 02.033 Caruso-Neves C 04.045, 06.028 Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, 06.068 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JS 05.055 Campos DHJ 06.056 Carvalho JSM 11.012, 11.014 Campos DW 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04.016, 04				
Camanducaia DSM 09.074 Carvalho AA 09.098 Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, 06.068 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.012, 09.016, 09.104 Campos DW 01.035 Carvalho MHC 01.030, 04.002, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 09.016, 09.104 Campos MM 01.019, 01.023, 03.011, 04.016, 04.016, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047,				
Câmara NOS 04.079, 09.043 Carvalho AAF 06.022 Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, 06.063 Carvalho FDGF 08.006 Camargo LL 06.066, 06.068 Carvalho FL 03.003, 03.018 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 09.016, 09.104 Campos MM 01.019, 01.023, 03.011, 04.016, 04.016, 04.017, 04.047, 0		02.033		
Camarão GC 11.024 Carvalho AMR 05.077 Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, 0.0606 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FL Outlet DQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE Op.018 09.018 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB Op.010, 02.028, 02.029 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM Op.012, 11.014 06.013, 09.012, 09.012, 09.012, 09.012, 09.016, 09.014 Campos DV 01.035 09.016, 09.104 09.016, 09.104 Campos EMB 02.041 Carvalho MHC Op.01, 030, 04.002,				
Camargo E 04.020, 09.096 Carvalho CE 04.046 Camargo LL 01.030, 06.063, 06.068 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.026 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos BMM 01.019, 01.023, 06.063, 10.001 06.063, 10.001 06.063, 10.001 Campos MM 01.019, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.049, 04.067, 04.133, 04.009, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.056, 06.056 01.0040, 04.055, 04.093 Campos RDL 03.036 03.036 04.093 Campos PDL 03.036 03.036 04.049 Campos	Câmara NOS	04.079, 09.043	Carvalho AAF	06.022
Camargo LL 01.030, 06.063, 06.068 Carvalho FDGF 08.006 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 09.104 Campos MM 01.019, 01.023, 03.011, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.046, 04.047, 04.046, 04.047, 04.046, 04.047, 04.046, 04.047, 04.046, 04.047, 04.046, 04	Camarão GC	11.024		05.077
Camarini R 04.131 Carvalho FL 03.003, 03.018 Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campi P 04.002, 04.026, 04.026, 04.027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 03.011, 04.016, 04.016, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.049, 05.056, 08.004, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.005 Carvalho VF 08.007 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 04.093 Campos Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casagrini DE 01.038	Camargo E	04.020, 09.096	Carvalho CE	04.046
Camarini R 04.131 Carvalho FLDQ 11.012, 11.014 Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 03.011, 04.016, 03.011, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.049 Carvalho WA 03.023, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.049, 04.055, 04.093 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 Carvalho-Sousa CE 01.040, 04.055, 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casagrande R 04.049	Camargo LL	01.030, 06.063,	Carvalho FDGF	08.006
Campesatto-Mella E 09.107 Carvalho JE 09.018 Campi P 04.002, 04.026, 04.026, 04.027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 06.014, 04.016, 06.068 Carvalho MHC 06.063, 10.001 03.011, 04.016, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 05.056, 08.004, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 06.074 Carvalho PO 07.009 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 Carvalho-Sousa CE 01.040, 04.055, 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038		06.066, 06.068	Carvalho FL	03.003, 03.018
Campi P 04.002, 04.026, 04.027 Carvalho JGB 02.010, 02.028, 02.029 Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 04.016, 03.011, 04.016, 03.011, 04.016, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.040, 04.047, 05.056, 08.004, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.040, 04.055, 04.093 Carvalho WA 11.003 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Camarini R	04.131	Carvalho FLDQ	11.012, 11.014
Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 03.011, 04.016, 03.011, 04.016, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.040, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.049 05.056, 08.004, 04.049 Carvalho VF 08.007 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Campesatto-Mella E	09.107	Carvalho JE	09.018
Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 03.011, 04.016, 03.011, 04.016, 04.016, 04.017, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.047, 04.040, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.133, 04.067, 04.049 05.056, 08.004, 04.049 Carvalho VF 08.007 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Campi P	04.002, 04.026,	Carvalho JGB	02.010, 02.028,
Campi PS 08.008 Carvalho JS 05.055 Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, Campos MM 01.019, 01.023, 06.063, 10.001 03.011, 04.016, Carvalho MHC 06.068 04.017, 04.047, Carvalho MS 03.023 04.067, 04.133, Carvalho PO 07.009 05.056, 08.004, Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos -Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	-	04.027		
Campos D 04.098, 04.104 Carvalho JSM 11.012, 11.014 Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, Campos MM 01.019, 01.023, 06.063, 10.001 03.011, 04.016, Carvalho MHC 06.068 04.017, 04.047, Carvalho MS 03.023 04.067, 04.133, Carvalho PO 07.009 05.056, 08.004, Carvalho VF 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos -Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Campi PS		Carvalho JS	
Campos DHJ 06.056 Carvalho LCRM 06.013, 09.012, 09.016, 09.104 Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 06.063, 10.001 06.063, 10.001 03.011, 04.016, 04.016, 04.017, 04.047, 06.068 Carvalho MS 03.023 04.067, 04.133, 06.07, 04.133, 06.07 Carvalho PO 07.009 05.056, 08.004, 07.005, 08.004, 07.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, 04.093 Campos RDL 03.036 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038				11.012, 11.014
Campos DV 01.035 09.016, 09.104 Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 06.068, 10.001 06.063, 10.001 03.011, 04.016, 04.016, 04.017, 04.047, 06.068, 04.017, 04.047, 06.068 04.067, 04.133, 06.078 07.009 05.056, 08.004, 05.056, 08.004, 05.056, 08.004, 05.002, 10.005 07.009 08.007 Campos RDL 03.021 Carvalho WA 11.003 Campos RDL 03.036 04.093 Campos Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038		*		
Campos EMB 02.041 Carvalho MHC 01.030, 04.002, 06.063, 10.001 Campos MM 01.019, 01.023, 06.063, 10.001 06.063, 10.001 03.011, 04.016, 03.011, 04.016, 04.017, 04.047, 06.068 04.017, 04.047, 06.068 03.023 04.067, 04.133, 06.07, 04.013, 04.067, 04.133, 06.07 07.009 07.009 05.056, 08.004, 05.005, 08.004, 05.005, 08.007 08.007 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, 04.093 Campos RDL 03.036 04.093 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	-			
Campos MM 01.019, 01.023, 03.011, 04.016, 04.017, 04.047, 04.067, 04.133, 04.067, 04.133, 05.056, 08.004, 10.002, 10.005 Carvalho MS Carvalho PO Carvalho VF 08.007 10.002, 10.005 07.009 05.056, 08.004, Carvalho WA 11.003 Campos RDL Campos RDL Campos RDL Campos-Júnior JC Canal PF 03.021 03.036 01.002 01.002 01.002 05.023, 06.078 Casagrande R Casarini DE 04.049 04.049 01.038			Carvalho MHC	
03.011, 04.016, Carvalho MHC 06.068 04.017, 04.047, Carvalho MS 03.023 04.067, 04.133, Carvalho PO 07.009 05.056, 08.004, Carvalho VF 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	*			
04.017, 04.047, Carvalho MS 03.023 04.067, 04.133, Carvalho PO 07.009 05.056, 08.004, Carvalho VF 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Campos MM		Carvalho MHC	•
04.067, 04.133, Carvalho PO 07.009 05.056, 08.004, Carvalho VF 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038				
05.056, 08.004, Carvalho VF 08.007 10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038				
10.002, 10.005 Carvalho WA 11.003 Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038				
Campos RDL 03.021 Carvalho-Sousa CE 01.040, 04.055, Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038				
Campos RDL 03.036 04.093 Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038	Compos PDI			
Campos-Júnior JC 01.002 Casagrande R 04.049 Canal PF 05.023, 06.078 Casarini DE 01.038			Cai vaiii0-50u8a CE	
Canal PF 05.023, 06.078 Casarini DE 01.038			Conogrando	
, ,				
Candea ALP 01.010, 01.011			Casaiiii DE	01.038
	Canuca ALF	01.010, 01.011		

Casarotto PC	03.001, 03.008,	Ciambarella BT	01.006
	03.013	Cicció JF	09.003
Cassali GD	09.093	Cicillini SA	06.035
Castello Branco MVS	09.035, 09.036	Cicogna AC	06.056
Castor LRG	05.022	Cintra ACO	09.001, 10.011
Castor MGM	04.010, 04.134	Cirillo MC	09.078
Castro MM	06.029, 06.040,	Cisalpino D	03.036, 04.044,
000010 111111	06.085	0100121110 2	04.082, 04.115
Otu- NO		6: 1: PC	
Castro NG	01.016, 02.009,	Cisalpino PS	04.034
	02.043, 05.030	Claudino MA	06.058, 08.006
Castro TBR	04.132	Clemente-Napimoga JT	05.066, 09.014
Castro-Faria-Neto HC	04.090, 04.106,	Clementino-Neto J	09.045
	04.124, 09.086,	Clissa PB	04.099
	09.103	Coelho EB	11.028
C CDA			
Cau SBA	06.060, 06.077	Coelho FM	04.019, 04.137
Caumo W	03.020, 03.028	Coelho LP	04.050, 08.007
Cavalcante ALC	04.065, 05.064	Coelho MGP	05.011, 09.010,
Cavalcante FA	09.034, 09.045		09.040, 09.071
Cavalcante-Silva LHA	05.015	Coelho MM	04.101
Cavalcanti PP	11.024	Coelho-Sampaio TL	04.071
Cavalli RC	06.021, 08.001,	Coeli FB	11.010
	11.031	Colares MT	05.064
Cavallini OF	09.075	Colotta F	04.132
Cavriani G	04.052	Colquhoun A	10.001
Cechinel Filho V		Cólus IMS	10.010
Cecimiei Fililo V	05.016, 05.020,		
	09.003, 09.073,	Cons BL	09.006, 09.057,
	09.101		09.072
Celes MRN	06.046	Conserva LM	09.077, 09.081
Celotto AC	06.033	Contarato KS	09.075
Cenac N	04.138	Contardi EB	02.022
Cenedeze	04.079	Conte FP	04.035
Centurião FB	03.027, 09.091	Contin DK	01.020
Ceravolo GS	04.002, 06.063,	Conto MB	02.029
	06.068	Contri RV	11.019
Cereda CMS	05.026	Cordeiro RSB	01.003, 04.050,
Ceron CS	06.029, 06.031,	001401101102	04.056, 04.127,
ccion es			
	06.040, 06.077,	0 1: 1/00	04.128, 08.007
	06.085	Cordeiro VSC	09.012, 09.016
Cerqueira GS	09.047, 09.087	Cordellini S	06.056
Cerutti M	05.017, 05.037	Córdova MM	05.072
Cerutti ML	05.059	Corrêa FMA	02.003, 02.007,
Chagas DWN	10.013	001104111111	02.008, 02.012,
Chagas-Silva F	01.004		02.014, 02.019,
Chambergo FS	02.052		02.020, 02.026,
Chandler PR	04.119		02.030, 02.036,
Chavasco LS	04.001		02.040, 02.051,
Chaves HV	04.112, 05.008,		03.002, 03.014
01101/05/11/	09.030	Corrêa JD	04.007
Charres IIV			
Chaves HV	05.042, 05.064,	Corrêa JWN	06.014
	09.049	Corrêa MS	09.082
Chaves MH	04.113, 05.033,	Corrêa R	04.117
	05.034, 05.035,	Corrêa RX	11.004
	09.098	Corrêa T	06.046, 06.062
Chaves MH	05.048	Correia ACC	09.095
Chen LS	11.013	Correia D	03.022
Cheniaux Jr E	03.035	Côrtes SF	06.003, 06.047,
Chichorro JG	05.019, 05.067		06.051, 06.065,
Chignalia AZ	01.030		09.015
Chudzinski-Tavassi AM	09.038, 09.083		
	· · · · · · · · · · · · · · · · · · ·		

Costa CA	06.013, 09.012,	Cunha FGP	07.007
	09.016, 09.104	Cunha FL	10.003
Costa DL	04.075	Cunha FQ	03.002, 04.035,
Costa DL	09.055	•	04.049, 04.051,
Costa EA	09.011, 09.037		04.054, 04.064,
Costa EB	06.070		04.073, 04.075,
	10.008		04.103, 04.119,
Costa ES			
Costa GNO	11.026		04.120, 04.121,
Costa JCS	01.003, 04.127		04.122, 04.123,
Costa JL	05.042		04.126, 04.129,
Costa JS	05.013		05.009, 05.025,
Costa JVG	04.095, 07.010		05.029, 05.038,
Costa MFB	06.036		05.051, 05.061,
Costa MFS	04.045		05.068, 06.046,
Costa MFS	04.110		06.084, 07.006,
Costa NF	09.103		09.056
Costa R	05.003, 05.079	Cunha FVM	09.005
Costa RD	03.023	Cunha GH	11.024, 11.025,
Costa SKP	04.002, 04.004,		11.027
	04.020, 04.026,	Cunha TM	03.002, 04.049,
	04.027, 04.030,		04.073, 04.129,
	04.038, 04.086,		05.025, 05.029,
	04.104, 04.131		05.038, 05.061
Costa VCO	09.034, 09.045	Cunha TM	04.075, 04.103,
Costa VV	04.011, 04.022,		04.122, 05.051
	04.044, 04.082,	Cunha VMN	01.007, 06.016,
	04.083, 04.115,		08.002, 08.005
	04.137, 05.043	Curi R	10.008
Costa-Lotufo LV	09.050, 10.007,	Cursino NM	06.022
Costa-Lotulo Lv			
G	10.009, 10.018	Cury Y	05.006, 05.014,
Costa-Neto CM	01.038, 02.033,		05.028, 05.055,
	10.012		05.078, 10.008
Costentin J	09.008, 09.091	Cyrino FZ	09.022
Cotias AC	04.127, 04.128	Czaikoski PG	04.051
Coutinho R	01.023, 04.133	D´Andrea ED	05.031, 07.003
Couto GC	04.127, 04.128	D´Ávila H	04.106
Couto RO	09.037	Da Costa FB	05.029
Couto-Pereira N	02.046	Da Cunha C	02.005
Crestani A	11.005	da Frota Jr MLC	09.080
Crestani CC	02.008, 03.014	da Silva DA	06.082
Crestani S	06.038, 06.039,	da Silva JG	09.021
	06.042, 09.007,	da Silva JK	06.025
	09.020, 09.068	da Silva LM	09.013, 09.019,
Crippa JA	04.041	da Siiva Eiri	09.020, 09.039
Cruz CCD		do Cilvo O	
	04.050, 08.007	da Silva O	03.035
Cruz L	05.019	da Silva RM	06.073, 06.081
Cruz MP	09.014	da Silva VC	09.076
Cruz RC	08.008	da Silva-Santos JE	06.038, 06.039,
Cruz SM	05.016		06.042, 06.055,
Cruz-Höfling MA	01.020		06.062, 09.007,
Cruz-Machado SS	04.055, 04.093		09.068
Cuman RKN	04.068, 09.042,	Dach F	11.011
Cuman KKN			
	09.043, 09.051,	Da-Fe AR	04.071, 04.084
	09.054, 09.094,	Dal Belo CA	09.066, 09.082
	09.097	DalBó S	04.032, 06.027
Cunha A	09.059	Dale CS	05.021, 05.062
Cunha AOS	02.016	Dalla Costa T	11.005, 11.019
Cunha CRM	10.015	DallAcqua M	05.001
Cunha CS	04.079	Dalmau SR	09.040
Cuilla CS	UT.U13	Daillau SK	09.040

Dalmolin GD	02.023, 04.118,	Dias L	06.082, 06.083
	05.040, 05.065	Dias MA	02.055
Dalpra WL	02.046, 03.029	Dias QM	05.050
Dal-Secco D	06.046, 06.075	Dias RYS	09.038, 09.083
Dalsenter PR	09.021	Dias-Junior CAC	06.040
Damasceno DCF	09.005, 09.053	Diaz BL	04.014, 04.024,
Damião JM	09.094		04.053, 04.110,
Damião MJ	09.043, 09.097		04.135, 10.004
Dantas JA	09.051, 09.054	Dillenburg-Pilla P	10.012
Dantas RT	06.036	Diniz CRAF	03.013
Darmarco ED	04.062, 09.026	Diniz J	09.050
da-Silva-Filho VJ	01.002	Diniz MFFM	09.024, 09.058
Davel APC	01.018	Do Nascimento JLM	04.029
De Andrade MCC	01.038	Do Rego JC	09.008, 09.091
de Araújo DR	05.026, 05.039,	Domiciano TP	04.068, 09.051
de madjo Bre	05.046		04.003, 04.040,
1- Assis Dames MM		Domingos HV	
de Assis Ramos MM	04.052	D 1 MD	04.094
de Bortoli VC	03.034	Donadon MF	03.007
de Campos-Buzzi F	05.020, 05.074	Donato F	05.052
de Lima TCM	09.073	Dong KE	02.013, 02.025
de Lucca FL	01.033, 01.034	Dórea RSDM	09.014
de Oliveira AM	06.052, 06.084	dos Santos FC	09.088
De Oliveira CC	04.102, 07.009	dos Santos MH	06.051
de Paula DCC	06.006	dos Santos RC	09.033
de Paula E	05.026, 05.039,	Dotto G	05.019
de l'adia B	05.046	Drewes CC	05.005, 09.038,
de Devile, ID		Diewes CC	
de Paula JR	09.011	D: : D	09.083
de Paula Soares V	03.023	Driemeier D	04.047
de Paula TP	04.006	Duarte ID	05.027
de Prá MA	06.072	Duarte IDG	05.047, 05.071,
de Rezende V	08.001		05.076
de Rico TB	06.028	Duarte JC	09.014
de Souza AH	05.075	Dutra AL	06.011, 06.012
de Souza DP	09.096	Dutra RC	02.018, 05.079
de Souza MVN	01.010, 01.011	Eifler-Lima VL	11.005
de Souza P	06.038, 06.055,	Einicker-Lamas M	04.046, 06.016,
de Souza I	09.007	Difficket - Damas W	06.019, 08.002,
de Corres DC			
de Souza RG	02.047, 02.053	D1 1' 17 1 4' D	08.005
de Toni LGB	09.001	Ekundi-Valentim E	04.030, 04.038
Degaspari D	11.033	El-Cheikh MC	08.002, 08.005
Del Bel EA	03.025	Eler GJ	09.021
Delatorre P	09.107	Elias LLK	02.030, 07.002
Delbem ACB	06.050	El-Kik CZ	09.006, 09.084
Delbin MA	04.107	Elsas MICG	04.074
Delella FK	09.025	Elsas PPX	04.074
De-Leon E	04.077	Emanuelli T	02.057, 09.059
Della Colleta E	01.035, 01.036	Emiliano da Silva AF	09.012, 09.104
Della Justina AM	04.042	Eto C	05.069, 05.070
Della-Casa MS		Evangelista JSAM	
	09.078		06.053, 06.059
Delle Monache F	05.013	Évora PRB	06.033
Denadai-Souza A	04.138, 06.063	Fabri DRS	02.019, 02.020
Deolindo MV	02.007, 02.014	Faccim AG	09.067
Detanico BC	03.020	Faccioli LH	04.008, 10.011
Di Pietro G	11.004, 11.026	Fachim H	02.016
Dias AA	06.066, 06.068	Fachini FC	04.068, 09.042
Dias da Silva VJ	01.002	Fachini RF	04.076
Dias DM	09.067	Facundo VA	09.013, 09.017
Dias GEN	09.024, 09.027,	Fagundes CT	04.011, 04.022,
	09.058	- 20222000 01	04.044, 04.077,
	33.000		5 1.5 1 1, 5 1.5 1 1,

	04.082, 04.083,	Ferreira TPT	01.003, 01.006,
	04.115, 08.008	Terrena II I	04.018, 04.127,
Faiad OJ	10.008		04.128
Fais RS	05.049, 05.050	Ferreira VF	10.007, 10.009,
Falcão HS	09.052, 09.058,		10.018
	11.017	Ferreira ZS	01.028, 01.040,
Farias-Filho FA	04.056		04.055
Farinha TO	09.054	Ferreira-Junior WA	05.006
Farsky S	04.037, 04.039,	Ferreira-Sae MC	11.010
5	04.078, 04.087,	Ferri MK	02.046
	04.114, 09.038,	Ferriani R	11.007
	09.061, 09.083	Ferro ES	05.021
Fattori V	04.049	Fidalgo-Neto AA	11.022, 11.030
Fechine FV	04.109, 11.024	Fierro IM	01.014, 01.015,
Fedoce AG	02.012, 02.026		04.084
Felisbino S	09.025	Figueira GM	09.018
Fenner R	09.079	Figueira R	09.004
Fernandes ACO	05.006, 05.014,	Figueiredo CP	02.018, 05.003
	05.028	Figueiredo GSM	04.031, 05.036
Fernandes D	04.042, 06.030	Figueiredo IST	04.065
Fernandes FFA	09.084	Figueiredo IST	04.080
Fernandes HA	03.031	Figueiredo JB	04.013, 04.081
Fernandes HB	05.034, 05.035	Figueiredo JG	09.056
Fernandes JBF	11.007	Figueiredo LB	02.027
Fernandes PACM	01.027, 04.093	Figueiredo LF	11.034
Fernandes PD	04.031, 05.012,	Figueiredo MJ	04.125, 09.001
	05.013, 05.036	Figueiredo MM	04.070
Fernandes VO	11.025	Figueiredo MR	09.031, 09.103
Ferraris FK	09.031	Figueiredo Neto JL	03.023
Ferraz KC	06.037	Figueiredo TG	06.087
Ferraz-de-Paula V	03.017, 04.021,	Figueiredo VN	06.048, 06.057
	04.033, 04.041	Filgueira AA	04.112
Ferreira AKB	09.055, 09.092	Finamor IA	06.012
Ferreira AVM	04.005, 04.097,	Fior-Chadi DR	02.021, 02.031
	04.134	Fischer L	05.001
Ferreira BGA	09.046, 09.062,	Florentino FI	09.037
D : 0	09.090	Florenzano J	04.004, 04.020,
Ferreira C	02.004	T31	04.030, 04.131
Ferreira EDF	02.039	Flores Toque HA	08.003
Ferreira HHA	04.098, 04.104	Flower RJ	01.006, 04.018
Ferreira J	02.023, 04.118,	Fogaça MV	10.010
	05.005, 05.040,	Fonsêca DV	03.003, 03.018
	05.044, 05.058,	Fonseca EAI	10.001
	05.065, 05.075,	Fonseca JP	09.043, 09.054,
Ei Ii NO	09.017	E MI	09.094, 09.097
Ferreira Junior NC	02.012, 02.026	Fonseca MJ	04.049
Ferreira LG	06.033	Fonseca TF	09.084
Ferreira MRC	09.105 03.009	Fontana V	11.023 05.075
Ferreira R Ferreira RG	04.100, 04.101	Fontanini CEM Fonteles MC	06.080
Ferreira SH	04.049, 04.122,	Fontoura PCS	03.033, 03.035
reffella Sn			
	04.129, 05.025, 05.029, 05.038,	Forner S	02.006, 02.037, 02.055
	05.029, 05.036, 05.051, 05.061,	Fortaleza EAT	02.035
	05.068	Fortes ZB	01.030, 06.063,
Ferreira TF	09.099	101000 20	10.001
Ferreira TMI	11.008	Fraceto LF	05.039, 05.046
	11.000	Fraga CAM	01.009, 01.016,
		11454 011111	02.009, 01.010,
			02.005, 02.011,

	03.016, 05.007,		11.002, 11.015,
	05.010, 05.030,		11.031
	06.007, 06.020	Germano G	04.130
França RT	06.011	Gewehr CCV	05.005
Francischi JN	05.041	Giachini FR	01.012
Franco J	09.082	Giannocco G	09.043, 09.097
Franco JJ	09.001	Gimenes SNC	09.002
Franco JL	09.066	Gimenes-Junior JA	04.003, 04.094
Franco LAM	01.039, 02.049	Giorgi R	04.096, 05.045,
Franco-Penteado CF	06.058, 08.006	0.1018111	05.062
Franz-Montan M	05.039, 05.046	Giusti-Paiva A	06.079, 07.013
Frasson NR	05.052	Godin AM	04.101
Freitag A	09.042, 09.094	Godinho RO	01.022, 02.027
Freitas A	04.064	Golega BA	04.009
Freitas AH	01.026	Gomes AS	07.005, 07.006
Freitas APF	09.047, 09.087	Gomes BS	04.113
		Gomes FV	02.008, 03.001
Freitas CS	09.041		•
Freitas GA	09.075	Gomes FV	02.020, 03.002
Freitas GM	05.011, 09.071	Gomes GM	02.023
Freitas JD	04.096	Gomes IBS	06.005
Freitas LBN	04.080	Gomes MS	06.017
Freitas TC	09.066	Gomes MSR	09.002
Frode TS	04.062	Gomes MVM	03.015
Frota Bezerra FA	11.020, 11.021,	Gomes VA	11.007
	11.025	Gomes VM	06.080
Frussa-Filho R	03.031	Gomez MV	02.023, 02.048,
Frutuoso VS	09.086, 09.103		05.040, 05.075
Furtado GS	06.089	Gomez R	02.046, 03.029
Gaban GA	09.084	Gomez RS	02.048
Galdino GS	05.027	Gomides LF	04.100
Galdino PM	09.011, 09.037	Gonçalves CJ	05.020
Gambero A	04.102, 07.007,	Gonçalves DO	04.065, 04.080
	07.009	Gonçalves FM	11.011
Gambero S	07.007	Gonçalves RB	03.032
Gambôa NF	01.016	Gonçalves W	04.137
Gandra	05.078	Gondim DV	05.042
Garcia CC	04.061	Gonsalez SR	06.019
Garcia JAD	11.001	Gosmann G	09.079
Garcia LMG	06.022	Gotardo EMF	04.102, 07.009
Garcia-Cairasco N	02.033	Goulart MOF	10.007
Garlet GP	04.054	Grabe-Guimarães A	06.006, 09.044,
Garlet TP	04.054		06.049
Gasparini G	11.010	Grangeiro NMCG	05.008
Gasparotto FM	09.029	Grespan R	04.066, 04.075,
Gasparotto Junior A	06.039, 06.055,	Grespan K	04.076, 04.119,
dasparotto oumor n	09.007, 09.029		09.042, 09.054
Gava AL	06.018	Grillo LAM	09.055
Gay BM	03.027	Grillo R	05.039, 05.046
Gayer CRM	05.011, 09.071	Gris V	09.021
Gazarini L	03.012	Guabiraba R	04.063, 04.115
Gazzinelli RT	04.073	Gualda LBS	02.050
Gazzoto AF	06.048, 06.057	Guarido KL	06.038
Gehring MP	10.002	Guedes GS	06.087
Gelfuso GM	04.008	Guerra GP	04.118, 05.005
Gemignani S	03.032	Guginski G	05.024
Gerardi-Junior CA	03.031	Guglielmotti A	04.097
Gerlach RF	06.029, 06.031,	Guilherme VA	05.039, 05.046
	06.060, 06.074,	Guimarães CL	04.062, 09.026
	06.077, 06.085,		

Guimarães DA	06.031, 06.074,	Irulegui RSC	06.089
	06.077, 06.085	Ishizawa MH	11.003
Guimarães FS	02.008, 02.014,	Iyomasa MM	02.041, 02.044,
	02.032, 02.038,		02.047, 02.053
	02.050, 03.001,	Izidoro-Toledo TC	06.074, 11.010,
	03.002, 03.005,		11.011, 11.015,
	03.006, 03.008,		11.028
		Is sale Farmaine ALD	
O : ~ IIN	03.026	Jacob Ferreira ALB	06.004, 11.002,
Guimarães HN	06.006, 09.044		11.007, 11.010
Guimarães JA	09.022	Jader ABS	08.004
Guimaraes MZP	01.009, 02.043,	Janiszewski M	06.063, 06.066,
	05.030		06.068
Gurgueira SA	04.098	Jesse CR	04.036
Gutierrez VP	05.006, 05.028,	Jesus NZT	09.048
	05.055, 05.078	Jesus RPFS	05.063
Guzzo LS	05.071, 06.006	Joca SRL	03.002, 03.004,
	•	JUCA SKL	
Gyurko R	04.086		03.005, 03.006,
Haas JS	09.008, 09.091		03.013, 03.015,
Haas SE	11.019		03.026, 03.030
Hallak JEC	04.041	Jorge ARC	06.059
Hamasato EK	04.021	Jorge IP	05.002
Hank A	09.026	Jorge RJB	06.036, 06.053,
Hara DB	05.057	8	06.059
HASSE DR	02.011, 03.016,	Juliano L	05.062
IMSSE DK	09.008, 09.079	Juliano MA	05.062
TT 1 . D.C.A			
Hayashi MA	09.065	Jurgilas PB	04.050, 04.127,
Не Ү	06.014		04.128
Hebeda CB	04.037, 04.078,	Jurkiewicz A	01.037
	04.087, 04.114,	Jurkiewicz NH	01.037
	09.038, 09.061,	Justino PFC	04.095, 07.010
	09.083	Kaiser M	11.019
Heimann AS	05.014, 05.021	Kanashiro A	02.041
Helal Neto E	10.016	Kanazawa LKS	09.088
Henriques AT	09.028, 09.080	Kangussu L	06.003
Henriques MG	01.010, 01.011,	Karklin YC	08.008
	04.035, 04.045,	Kartnaller MA	07.003
	04.110, 09.031	Kassuya CAL	05.060, 06.055,
Henriques-Santos NF	03.025		09.007, 09.029,
Herrera BS	04.002, 04.026,		09.060, 09.068,
	04.027, 04.086		09.069
Hidalgo MP	03.020	Kato M	01.033
Hipolito UV	06.004, 06.008	Kawamoto EM	01.018, 01.024,
Hiruma-Lima CA	05.022, 09.009,	nawamoto zm	11.033
III uma-bima en	09.025, 09.033,	Keller AC	04.079
TT' 3.6	09.076	Kerbauy LN	02.047, 02.053
Hiyane M	04.079	Kerber VA	09.028
Hoffmeister C	05.044	Kettelhut IC	01.033, 01.034
Hollais AW	03.031	Kinoshita PF	01.018
Hott SC	02.019, 02.020	Klein A	04.100, 04.101
Humberto MMS	09.055	Klein Jr LC	09.101
Hyslop S	06.082, 06.082,	Klein LC	09.102
<i>y</i> -	06.083, 06.086,	Koepp J	02.006, 02.037,
	09.085	посрр с	02.055
Iooomini M		Voitman S	
Iacomini M	09.041	Koifman S	11.016
Ikeda CM	11.008	Konno K	05.006
Índio-do-Brasil V	11.016, 11.018	Konstantinovas C	11.026
Insuela DBR	08.007	Krimon S	05.018
Interaminense LFL	06.025	Kroon EG	03.036
Irazusta SP	01.020	Kubes P	01.013

Kummer R	04.066, 04.068,	Lemos MTR	02.013
Kummer K	09.042	Lemos Neto M	09.016
Kummerle AE	06.007, 06.020	Lemos VS	06.047, 06.051,
Kunkel SL	04.069, 04.071,	Lemos Vo	06.065, 09.015
Kulikel SL	04.084	Lenoir AS	05.020
Kushima H	09.076	Lepletier A	04.046
Lacchini R	11.010	Lessa LMA	06.080
Lacerda JSJ	11.006	Liew FY	05.009, 05.051
Lacerda RB	01.009	Ligeiro de Oliveira AP	04.003, 04.009,
Lacerda-Queiroz N	03.021, 03.036,		04.021, 04.023,
I adialog I	04.085, 04.136	Lima AAM	04.040
Ladislau L	04.071, 04.084	Lima AAM	07.011
Lage SL	04.106	Lima CB	04.039
Lages PM	04.074	Lima CHS	01.011
Lahlou S	06.025	Lima CJ	09.064
Lameiro TMM	10.003	Lima CKF	01.009, 05.031
Landgraf MA	04.079	Lima EO	09.024, 09.027,
Landgraf RG	04.079		09.052
Landgraf SS	06.028	Lima Filho CF	06.053
Lanna CM	11.015	Lima FO	05.004, 05.038
Lanznaster D	09.017	Lima GRM	09.035, 09.036,
Lapa AJ	01.035, 01.036,		11.017
	06.073, 06.081,	Lima IO	09.024
	09.065	Lima JT	09.063
Lapa FR	04.009	Lima LM	01.017, 05.015,
Lapa MAPC	01.028		05.031, 06.043,
Lara Morcillo LS	06.016, 06.019,		11.019
	08.002, 08.005	Lima LO	09.034, 09.045
Larsen GR	05.073	Lima ML	05.053, 07.003
Laurindo FRM	06.068	Lima MMS	02.035
Lavor MSL	02.048, 05.075	Lima MRV	03.018
Lazari MFM	01.021	Lima PDL	10.017
Lazarotto LF	04.016, 04.017,	Lima RL	04.005, 04.006,
	04.047		04.097
Lazzaretti C	02.015	Lima SF	09.081
Leal CM	05.010, 06.007	Lima TS	09.078
Leal DM	05.010, 06.007	Lima VCC	10.013
Leal LKAM	09.087	Lima VV	01.012
Leal NRF	09.010	Lima-Garcia JF	05.056
Leal PC	02.055, 04.017,	Lima-Jr DS	04.075
	10.005	Lima-Júnior RCP	04.120, 04.121,
Leal-Cardoso JH	06.025		05.073, 07.011,
Leão RX	02.002		09.056
Leiria LOS	08.006	Lima-Landman MTR	01.035, 01.036,
Leitão SG	05.013		06.073, 06.081
Leite ALAS	04.109, 11.020,	Limonte FH	02.044, 02.047,
	11.021		02.053
Leite ATJ	09.027	Linardi A	06.086
Leite CAVG	04.120, 04.121	Linder AE	06.069, 06.070,
Leite CE	01.019, 04.047		06.072
Leite CP	05.077	Linhares JH	04.109
Leite DFP	02.018, 02.055	Lino CNR	10.011
Leite LL	01.005, 07.011	Lino dos Santos Franco A	04.023, 04.037,
Leme TSV	09.029		04.040
Lemes EV	09.106	Lino RC	09.037
Lemes LFN	01.001	Lintomen L	04.105, 04.111
Lemos BC	09.089	Lira	05.078
Lemos HP	04.119	Lisboa SF	02.032, 02.038,
Lemos M	09.102		03.002

Lôbo de Araújo A	01.020	Machado-Silva LDF	05.041
Lobo RR	04.126	Maciel IS	03.011, 04.067
Locati M	04.010, 04.130	Maciel LIS	11.008
Lombardi L	04.114	Mackay CR	04.077
Longhi-Balbinot DT	09.017	Madeira MFM	04.006, 04.007,
Lopes AG	06.058		04.019, 08.008
Lopes AHP	01.002	Magalhães HO	10.013
Lopes ASA	02.034	Magalhães KG	04.053
Lopes DCF	01.039, 02.049	Magalhães MS	04.109, 11.027
Lopes F	04.061, 04.137	Magalhães PJC	04.120, 06.025
Lopes KS	06.036	Magalhães RC	04.029
Lopes LGF	07.008	Magina MDA	09.026, 09.106
Lopes LR	01.030, 06.063,	Magno LA	11.004, 11.026
	06.066, 06.068	Maia EP	07.004
Lopes LS	05.033, 05.034,	Maia I	10.017
	05.035	Maia JGS	06.025
Lopes MTP	04.100, 09.093	Maia MBS	09.030
Lopes NP	02.016, 09.061	Maia MBS	09.049
Lopes RM	11.022, 11.030	Maia RC	05.053
Lopes RS	04.074	Maia-Dantas A	04.002, 04.026,
Lopes STA	06.011		04.027
Lopes VM	09.094, 09.097	Maique ET	05.021
Lopes-Ferreira M	09.025	Malpezzi-Marinho ELA	03.031
Lopes-Silva S	02.003	Malta MB	02.054
Lopez SMF	05.017	Malvar DC	02.041, 04.070,
Lorand-Metze I	07.007	Marvar BC	04.125
Lorenzetti R	06.082	Mamede CCN	09.002
Lorenzi R	09.080	Manjavachi MN	02.018, 05.079
Lotufo CMdaC	05.025	Mantovani A	04.130
Louback LS	06.076	Marçal DMO	06.031, 06.077,
Lourenço EL	06.055, 09.029	M	06.085
Louzada Jr P	04.129	Marco LAC	11.026
Loyola YCS	11.001	Marçola M	01.027
Lucas TFG	01.021	Marcon R	05.017
Lucena GMRS	05.037	Marcondes S	04.107, 04.116
Lucetti LT	04.103, 07.005,	Marcucci MC	04.072
	07.006, 07.008,	Marculino DMM	09.052
	07.010	Maria AG	10.012
Lucho APB	09.082	Marinho AD	06.036, 06.053,
Ludovico ND	06.048, 06.057		06.059
Luiz AP	05.067	Marinho BG	05.012, 05.013,
Luizon MR	08.001, 11.010,		09.067, 09.075
	11.028	Marinho DG	09.067, 09.075
Luna-Gomes T	04.014, 04.053,	Marinho EAV	03.031
	04.135	Marinho-Filho JDB	09.050, 10.007,
Lunardi CN	06.032		10.018
Luvizuto EL	06.022	Markus RP	01.026, 01.027,
Luz PB	09.056	Mariao Id	01.028, 01.040,
Luz RA	04.074		04.055, 04.088,
Macedo CL	09.099		04.093
		Marratas CVD	
Macedo DS	09.087	Marprates CVB	04.007
Macedo Junior SJ	05.017, 05.037,	Marques CD	03.010
3.6 1 737	05.059	Marques de Carvalho RS	09.073
Macedo RN	04.109	Marques EB	06.034, 06.041,
Machado BH	02.002, 06.044		06.076
Machado FC	05.014, 05.078	Marques FLN	05.055
Machado FS	04.034	Marques LHS	10.003
Machado MM	09.006, 09.057,	Marques LM	09.014
	09.072, 09.089		

Marques MCA	06.038, 06.039,	Medeiros LF	02.024, 03.020,
1	06.042, 06.055,		03.028, 05.032
	09.007, 09.013,	Medeiros R	02.006
	09.019, 09.020,	Medeiros VM	09.034, 09.045
	09.029, 09.039,	Meira NA	09.101
	09.041, 09.068	Meireles BA	05.012
Managara DD	•		
Marques PR	09.010	Meireles VS	09.014
Marques RB	05.033, 05.034,	Melchiors AC	11.009
	07.001	Melendes A	04.046
Marques RB	05.035	Mello GC	04.057, 04.108
Marques SA	06.041	Mello JCP	02.017
Martin L	04.138	Mello LE	02.027
Martin Z	09.101	Mello NFS	05.039, 05.046
Martinez AMB	09.072	Mello SM	06.083
Martinez CAR	10.003	Mello WG	04.015
Martini AC	02.006, 02.037	Mellor AL	04.119
Martino T	09.040	Melo CM	07.013
Martins AMC	06.036, 06.053,	Melo DLR	04.120
	06.059	Melo GAN	09.094
Martins CL	11.018	Melo LFM	04.095, 07.010
Martins DF	05.017, 09.017,	Melo MCC	04.028
Warting Di	09.041	Melo PA	04.081, 09.006,
Martins EAC	02.031	Meio I A	09.057, 09.072,
Martins GG	02.050		
		Mala DDC	09.084, 09.089
Martins IRR	09.100	Melo PRS	11.004
Martins JM	04.070, 04.125	Melo R	11.008
Martins JP	04.133	Melo RCN	04.106
Martins JPB	11.033	Melo TS	04.065
Martins MA	01.003, 01.006,	Melo TV	05.077
	04.018, 04.050,	Melo-Filho AF	10.013
	04.056, 04.127,	Mendes DAGB	09.019, 09.046,
	04.128, 08.007		09.062, 09.090
Martins MCC	07.004, 09.005,	Mendes GD	11.013
	09.053	Mendes JM	09.052
Martins Porto R	04.002, 04.020,	Mendes LJ	06.047
	04.026, 04.027,	Mendes LVP	06.016
	04.086	Mendes MM	09.002
Martins TS	03.016	Mendes Ribeiro AC	03.033, 03.035,
Martins V	04.013		06.010
Martins VV	09.006, 09.057	Mendes TCF	05.007, 05.010
Martynhak BJ	03.022	Mendonça MSA	01.011
Mascarello A	10.005	Mendonça PR	04.126
Mascarin LZ	05.069, 05.070	Menegatti R	10.015
Maslowski KM	04.077	Meneses GC	06.036
Matheus FC	02.005	Menezes CMS	01.017
Matheus ME		Menezes de Lima Jr O	04.035, 04.042
	04.031, 05.036		,
Matheus-Souza D	04.018	Menezes GB	01.013, 04.022,
Mathias PC	06.071	14 55555	04.043, 04.048
Matias TC	11.006	Menezes RRPPB	06.036, 06.053,
Matsubara CS	02.049		06.059
Matsui TC	04.101	Menezes Z	04.005, 04.006,
Matsumoto JPP	02.031		04.097
Matta CBB	05.015	Mesquita Jr O	06.061
Maués LAL	04.029	Mesquita-Santos FP	04.014, 04.053,
Maya-Monterio CM	04.090, 04.106		04.135
Mazzardo L	09.041	Mestriner FL	06.084
Medeiros J-VR	07.005, 07.006,	Metzger IF	11.003
	07.008	Meyrelles SS	06.005, 06.018
		Micaroni S	06.022

Mielcke TR	10.005	Morais LH	02.035
Milanezi CM	04.075	Morais SRL	04.015
Milani H	02.022	Morandi V	01.029, 10.016
Milani H	02.039	Morcatty TQ	04.011, 04.022,
		Morcatty TQ	
Milet-Morais MM	06.087		04.044, 04.082,
Miranda ALP	01.009, 05.023,		05.043
	05.031, 05.053,	Moreau RLM	03.017, 04.114
	06.076, 06.078	Moreira ELG	02.005
Miranda AS	03.021, 03.036,	Moreira FA	03.005
	04.085, 04.136,	Moreira JCF	09.080
	05.015		
M: 1 OD		Moreira MM	06.048, 06.057
Miranda CR	09.054	Moreira MMB	09.036
Miranda DM	11.026	Moreno Junior H	06.048, 06.057,
Miranda LSM	05.012, 05.013		06.083
Mirolo M	04.130	Mori MA	02.039
Mitre GC	04.007	Morrone FB	01.023, 03.011,
Miwa MY	04.100	1120110110 1 2	04.016, 04.017,
	10.006		
Miyahara GI			04.067, 04.133,
Molina L	09.032		10.002, 10.005
Molinaro RC	04.069, 04.124	Morrot A	04.045, 04.046
Monica FZT	08.003, 08.006	Moss MB	06.010
Monte LO	03.019	Mota FD	09.048
Monte-Alto-Costa A	04.013	Mota KSL	09.024
Monteiro APT	04.025, 04.059	Mota VG	03.003, 03.019
Monteiro DLS	04.109	Mothes B	09.080
Monteiro FMF	07.012	Motta EM	05.003, 05.056,
Monteiro FS	09.100		05.078, 05.079
Monteiro HSA	06.036, 06.053,	Motta NAV	05.023, 06.034,
	06.059		06.076, 06.078
Monteiro PF	04.107	Moura AB	09.065
Montenegro CA	09.035, 09.036,	Moura BA	05.077, 09.087
Montenegro Ch	11.017	Moura MABF	10.007
NA A L DNA			
Montenegro Jr RM	11.021, 11.025	Mourão LTC	04.120
Montenegro MF	06.040	Mourao PAS	09.057
Montenegro RC	09.050, 10.007,	Müller LG	02.057, 09.004
	10.009, 10.017,	Munaro DV	05.030
	10.018	Munhoz CD	01.030, 01.039,
Montenegro VM	02.043		02.054, 04.038,
Montes RC	09.052		11.033
Montezuma K	03.006	Munhoz FC	06.067
Moraes GB			
	06.053	Muniz GD	03.023
Moraes JA	09.022	Muscará MN	04.002, 04.004,
Moraes JB	06.064		04.020, 04.026,
Moraes MEA	04.109, 11.020,		04.027, 04.030,
	11.021, 11.024,		04.038, 04.086,
	11.025, 11.027		04.087, 04.104,
Moraes MO	04.109, 09.050,		04.131, 04.138,
Moraes MO			
	10.007, 10.009,	1.634	06.063
	10.017, 10.018,	Muxel SM	01.040
	11.020, 11.027	Muzi-Filho H	01.007, 08.002,
Moraes NF	04.096		08.005
Moraes RA	11.020, 11.024,	Nadruz Filho W	11.010
	11.027	Nagem TJ	06.051
Moraes TP	02.041	Naime ACA	11.001
Morais GB	06.059		01.002, 05.066,
		Napimoga MH	
Morais ICO	06.036, 06.053,		09.014
	06.059	Nardo M	03.008
Morais LCSL	03.003, 03.018,	Nascente LC	01.001
	03.019	Nascimento AR	01.021

Nascimento DCB	04.051, 04.073	Okamoto R	06.022
Nascimento DD	09.103	Okoba W	07.002
Nascimento DF	04.109, 11.020,	Olchanheski Junior LR	06.030
	11.027	Olguins DB	03.029
Nascimento FP	05.017, 05.037,	Oliani SM	04.089
	05.059	Olinda TM	04.065
Nascimento JB	01.001, 01.004	Oliveira AC	09.023
Nascimento JHM	06.016	Oliveira AM	06.017, 06.046
Nascimento MVL	04.029	Oliveira AM	06.031, 06.077,
Nascimento MVM	09.011, 09.037	011/0110(11111	06.085, 11.011
Nascimento NRF	06.080	Oliveira AP	09.102
Nascimento-Jr NM	05.007, 05.010	Oliveira CC	04.109
Nascimento-Silva V	01.029, 09.022	Oliveira CJ	04.075
Nasciutti LE	01.031	Oliveira CMA	04.076
Natarajan R	01.033	Oliveira D	05.069
Nebuloni M	04.130	Oliveira DA	09.055
	02.032		
Nejo P		Oliveira DA	09.092
Neto H	04.064	Oliveira EB	06.015, 06.061,
Neto-Neves EM	06.029, 06.037,	01: : 514	09.065
	06.040	Oliveira EM	02.034, 02.052
Netto CA	02.024, 05.032	Oliveira F	09.002
Neves G	02.011	Oliveira FA	04.113
Neves KRT	09.087	Oliveira FA	05.034, 07.001
Neves TLM	09.088	Oliveira FGV	07.001, 07.002,
Nicolete R	04.008		07.012
Nicoletti NF	01.019	Oliveira FL	08.002, 08.005
Nicoli JR	04.077	Oliveira FS	02.044
Niconi-De-Almeida Y	01.015	Oliveira GA	09.095, 09.099
Niero R	05.020, 05.074,	Oliveira IS	07.001
111010 11	09.102	Oliveira JAC	02.033
Nin MS	02.046	Oliveira JC	06.071, 11.021,
Nishijima CM	09.025	Onvena oc	11.024, 11.027
Nobre MJ	03.009	Oliveira JPC	04.113
Nóbrega FFF	03.003	Oliveira L	05.057
Noel F	01.001, 01.004,	Oliveira LGT	06.020, 07.003
NOEI F			11.008
	01.017, 03.016,	Oliveira LP	
NI ' A.D	09.004	Oliveira MA	01.030
Nogueira AF	04.095, 07.010	Oliveira MA	10.001
Nogueira AF	10.009	Oliveira MC	04.005
Nogueira CRC	04.061	Oliveira MC	05.018
Nogueira CW	03.027	Oliveira MR	01.005
Nogueira CW	04.036	Oliveira PRB	09.012, 09.016
Nogueira de Melo GA	09.054	Oliveira RCS	06.088
Nogueira FM	01.035, 01.036	Oliveira RMMW	02.022
Nogueira JS	04.098	Oliveira RMMW	02.050
Nogueira MCO	05.053	Oliveira RMW	02.039
Nogueira TO	05.045	Oliveira RSB	04.080
Nojimoto FD	01.032	Oliveira SHP	04.015, 04.058,
Nomizo A	10.011		04.060, 10.006
Nonose Y	03.028	Oliveira SL	09.063
Noronha FJD	07.011	Oliveira SM	04.118
Noviello MLM	04.048	Oliveira SM	05.058
Nucci G	04.026, 06.058,	Oliveira-Filho RM	04.003, 04.023,
TIGOT G	08.006, 11.013	Onvena i into idii	04.040, 04.052,
Nunes I C	07.011		· · · · · · · · · · · · · · · · · · ·
Nunes LG		Olivoiro Lima A I	04.094
Nunes PHM	07.004	Oliveira-Lima AJ	03.031
Nunes-Filho DM	07.004	Olivon VC	06.046, 06.052,
Ognibene DT	06.010, 06.013,	Olara DC	06.084
	09.012	Olsen PC	01.003

Onishi ET	11.032	Pereira DJ	06.048, 06.057
Oriá RB	04.121	Pereira FO	09.024, 09.027
Ornelas FGI	09.032	Pereira HJV	06.015, 06.061
Osorio CBH	04.080	Pereira IT	09.013, 09.088
Otuki MF	04.118, 09.046,	Pereira IT	09.019, 09.039
	09.062, 09.077,	Pereira KMA	09.049
	09.081, 09.090,	Pereira LMS	05.073
	09.106	Pereira M	03.022
Pachá BP	04.012	Pereira MF	09.040
		Pereira MGAG	
Pacheco-Silva A	04.079		02.033
Pacini ESA	08.009	Pereira MTR	02.044
Padaratz P	05.020	Pereira PAT	04.008
Padovan CM	02.001, 02.045,	Pereira PJS	04.016, 04.017
	03.007, 03.024	Pereira SL	06.020
Padovan D	02.001, 02.045	Pereira SS	05.033, 05.034,
Pagano RL	04.096, 05.045		05.035
Paiva-Lima P	05.041	Pereira TMC	06.018
Palazzin NB	06.008	Pereira VLP	05.012, 05.013
Palei ACT	06.021, 08.001,	Pereira VS	03.030
	11.031	Pereira-Silva PEM	04.048
Palermo-Neto J	03.017, 04.021,	Pereira-Silva REM	04.063
	04.033, 04.039,	Pereira-Toste F	06.041
	04.041	Perez AC	05.027, 05.071
Palheta Junior RC	07.002, 07.012	Perez AR	04.046
Pão CRR	04.128	Perissé L	01.007
Parada CA			
Parada CA	05.001, 05.018,	Pernomian L	06.017, 06.023
D : 0:1 L/D	05.028, 05.038	Peron JPS	04.004
Parreiras-e-Silva LT	01.038	Perretti M	01.006, 04.018
Pase C	02.057, 02.057	Perri SHV	06.022
Pase CS	09.059	Pesamosca ME	09.066
Pasqualini F	04.130	Pesquero JB	02.018, 05.079,
Passos CS	09.028		10.012
Patricio ES	02.018, 05.003	Pessini AC	04.070
Paula AM	04.022, 04.043	Pessoa AWP	06.053
Paula JR	09.037	Pessoa C	09.050, 10.007,
Paula TP	08.008		10.018
Paula-Gomes S	01.033	Pessoa CO	10.009, 10.017
Paulino CA	11.032	Pessoa DR	09.035, 09.036
Paulino N	04.072	Pessoa FLC	02.048, 05.075
Paulo M	06.024	Pessoa ODL	06.080, 09.050,
Pavanato MA	06.012	resour obb	10.017
Pazin A	04.126	Peters-Golden M	04.069, 04.110
Pecli CP	04.069	Petrilli CL	01.040, 04.093
Pedroso-Mariani SR		Piauilino CA	
	03.032	Plaulillo CA	05.048, 07.001,
Peixoto HS	06.073, 06.081	D' DOD	09.098
Pelayo JS	05.009	Picco DCR	06.050
Pellegrino R	09.065	Picolo G	05.006, 05.014,
Pelosi GG	02.051		05.055, 05.078
Penido C	04.035, 04.110,	Pierosan L	05.072
	04.110, 04.110,	Pimenta Costa CS	11.020, 11.021,
	09.031		11.024, 11.027
Penteado CF	06.086	Pimenta MT	01.021
Pereira AC	02.016, 06.032,	Pimentel LSB	01.016
	06.067, 06.089,	Pina dos Santos VP	02.052
	09.015	Pinato L	04.055, 04.093
Pereira B	09.018	Pinedo F	04.087
Pereira CCS	06.022	Pinheiro AAS	04.045, 06.028
Pereira DA	11.008	Pinheiro ACN	02.048, 05.075
Pereira DHS	03.024	Pinheiro ADN	07.001, 07.002
Total Dilo	00.041	I IIIICII O IIIII	57.001, 07.002

Pinheiro CG	11.012, 11.014	Queiroz Junior CM	04.019, 05.041
Pinheiro CN	04.065	Queiroz MLS	03.017
Pinheiro CS	04.025	Queiroz MR	09.002
		•	
Pinheiro CS	04.059	Queiroz RHC	06.004
Pinheiro FV	05.058	Queiroz VA	05.026
Pinheiro LS	03.019	Quesniaux V	04.083
Pinheiro ML	04.021, 04.033,	Quinaglia TSS	06.048, 06.057
I IIIIICII O WIB	04.041		
D' 1 ' D I		Quintão NLM	04.117, 05.002,
Pinheiro RJ	09.097		05.016, 05.074,
Pinho JF	06.065		09.003, 09.101
Pinho V	04.010, 04.022,	Quintas LEM	09.004
	04.061, 04.134,	Quinteiro MS	05.066
	04.137, 06.065,	Quinteiro-Filho WM	04.033
	08.008	Rabelo LA	
D:			06.087
Pinto AC	04.031, 05.036	RABELO RS	07.004
Pinto Duarte G	06.025, 06.026,	Rachid M	04.136
	06.087	Radin A	05.055
Pinto FA	05.011, 09.010	Rae GA	02.037, 05.024,
Pinto LG	04.122, 04.129,	1100 011	05.057, 05.067
Tillio LG	· · · · · · · · · · · · · · · · · · ·	D : 1 IM	
	05.029	Raimundo JM	06.041, 06.043
Pinto VLM	03.033, 03.035	Ramalho L	06.052
Piornedo RR	09.060	Ramirez RRA	11.017
Pires ALA	01.006, 04.018,	Ramiro JB	09.067
	04.050, 04.127,	Ramos GC	06.027
		Ramos MV	
D: 3.507	04.128		09.047, 09.056
Pires MEL	04.107, 04.116	Ramos-Alves FE	06.025, 06.026
Pires NF	06.048, 06.057	Rassam E	03.032
Pires-Oliveira M	01.022	Rates SMK	02.011, 02.015,
Pitanga QML	11.012, 11.014		03.016, 03.027,
Pitta LB	11.012, 11.014		09.004, 09.008,
Pittman K	01.013		09.079, 09.091
Piva B	04.110, 10.004	Reckziegel P	02.057, 09.059
Pizzolatti GM	09.088	Rehder VLG	09.018
Pizzolatti MG	09.019, 09.020,	Reis AC	04.010
	09.039, 09.106	Reis DG	02.014, 02.019,
Pontes AV	11.020, 11.024,	Itels 2 G	02.020, 02.026,
Toffics AV	· · · · · · · · · · · · · · · · · · ·		
D	11.025	D : 014	02.040, 03.014
Pontes LB	06.043	Reis GM	05.049, 05.050,
Portela LOC	06.011, 06.012		05.054
Portella VG	06.028	Reis HJ	03.021, 03.036,
Porto CS	01.021, 01.025		04.136
Poublan LE	04.024	Reis LM	11.001
Prada Morganti R	04.107	Reis MLA	09.105
Prado CM	06.014	Reis PG	06.049
Prado WA	05.049, 05.050,	Reis RC	04.092, 05.023,
	05.054		06.078
Pranke M	02.015	Reis RI	01.038, 10.012
Prediger RD	02.005	Renno AL	06.048, 06.057
Prezotto AO	11.032	Rennó AL	06.082, 06.083,
Prigol M	03.027		06.086
Priviero FBM	04.107, 08.003	Renovato-Martins M	01.008
Prosperi T	04.011	Resende AC	06.010, 06.013,
Proudfoot AEI	04.132		09.012, 09.016,
Prudente AS			09.104
TIUUCIIIC AS	04.118, 09.077,	D1- I O	
	09.081	Resende LC	05.076
Pupo AS	01.032, 08.009	Resstel LBM	02.008, 02.012,
Queiroz AC	05.015		02.014, 02.019,
Queiroz ALL	04.061		02.020, 02.026,
Queiroz D B	06.026		02.030, 02.032,
Sacrios D D	00.040		04.000, 04.004,

	00.000.00.010	D 1: DOM	01 000
	02.038, 02.040,	Rodrigues FSM	01.022
	03.001, 03.002,	Rodrigues GCR	05.063
	03.014	Rodrigues GJ	06.035, 06.044
Rezende B	04.010, 04.134	Rodrigues GS	09.022
Rezende RM	05.041	Rodrigues JA	07.002
Rial D	02.005	Rodrigues L	04.030, 04.038
Ribeiro A	03.017, 04.021,	Rodrigues MAP	06.082, 06.083
	04.033, 04.041	Rodrigues MRA	09.088
Ribeiro ACG	04.001	Rodrigues R	09.031
Ribeiro ALT	04.037, 04.078	Rodrigues RV	09.013
Ribeiro dos Santos R	05.004	Rodrigues VM	09.002
Ribeiro EAN	09.055, 09.092	Rodrigues WF	01.002
Ribeiro JM	04.075	Rodrigues-Junior VS	01.019, 01.023,
Ribeiro Junior E	11.033	Roungues-bullion V5	08.004
Ribeiro KA	04.112	Podrimag I MD	09.101
		Rodriguez LMP	
Ribeiro KA	09.030, 09.049	Rolim TL	09.027
Ribeiro LAA	09.063	Romanini CV	02.039
Ribeiro RA	01.005, 04.095,	Romano-Silva M	11.026
	04.103, 04.112,	Romeiro LAS	01.001, 01.004
	04.120, 04.121,	Romero TRL	05.047
	04.123, 05.073,	Roncon CM	02.017
	07.005, 07.006,	Roque NR	04.091, 04.106
	07.010, 07.011,	Rosa EA	04.076
	09.047, 09.056,	Rosa HS	02.015
	10.013	Rosa ML	02.041, 02.044,
Ricardo HD	09.006, 09.089		02.047, 02.053
Ricardo KFS	06.005	Rosas EC	01.010
Rico TB	04.012	Rossaneis AC	05.049, 05.054
Rigo FK	05.040, 05.065	Rossato M	05.005, 05.044
Rilson JP	09.043	Rossato MF	04.118
Rinaldo D	09.009	Rossi MA	06.014, 06.046
Rios ERV	09.087	Rossoni LV	
			01.018, 01.030
Rios-Santos F	11.003, 11.004,	Royer C	01.021
T)*** A T #T 7	11.026	Rozisky JR	02.024, 02.056,
Ritter AMV	04.068, 09.051		03.020, 03.028,
Riul ME	06.014	5 11 24	05.032
Rizzi E	06.029, 06.031,	Rubin MA	02.023, 05.005
	06.077, 06.085	Ruiz ALTG	09.018
Rizzo LV	04.004	Russo RC	04.061, 04.130
Rocco PRM	04.025, 04.051	Russowsky D	11.005
Rocha BAM	09.107	Ryffel B	04.063, 04.083
Rocha DD	10.017	Sá LG	05.073
Rocha DR	10.018	Sá Lima L	01.018, 01.024,
Rocha JBT	09.059		01.025, 01.039,
Rocha JT	06.009		02.049, 11.033
Rocha LR	09.003	Sabino KCC	09.010, 09.040,
Rocha MBS	11.020, 11.025,		09.071
Roella MBS	11.027	Sachs D	05.043
Rocha MN	02.034	Sakamoto S	09.004
Rocha NFM	09.087	Salama Rodrigues C	01.008
Rocha SS	05.042	Salas CE	04.100, 09.093
Rocha VHP	06.059	Saldanha-Gama RF	10.016
Rocio AAP	09.021	Sales AJ	03.004, 03.015
Rodrigues C	04.117	Sales ALCC	09.005, 09.053
Rodrigues CM	09.025, 09.033	Sales Filho HLA	05.048, 09.098
Rodrigues DH	03.021, 03.036,	Salgado MCO	01.038, 02.033,
	04.085, 04.136		06.002, 06.015,
Rodrigues EJM	10.013		06.061
Rodrigues FAR	10.017	Salgado PRR	03.003, 03.018
_		-	•

Salles LA	02.015	Santos R	03.031
Salles LA Salles LA			
	09.004	Santos RC	06.048, 06.057
Salmon DJJ	01.007	Santos RF	09.095, 09.099,
Salomão PAV	03.010	a	09.100
Salum C	03.025	Santos RGS	07.012
Salzedas LMP	04.058	Santos Sousa O	06.037
Samico RF	04.053, 04.135	Santos TC	09.070
Sampaio AM	06.059	Santos VAC	04.060
Sampaio LRL	09.087, 09.087	Santos VS	02.024, 03.028,
Sampaio SC	04.096, 09.078,		05.032
	10.008	Santos WC	10.018
Sampaio SV	09.001, 10.011	Santos WF	02.016
Sanches AIF	09.074	Sá-Nunes A	04.075
Sanches RS	09.074	Saraiva MIR	07.008
Sandrim VC	06.021, 08.001,	Saridakis HO	05.009
	11.028, 11.031	Sarragioto MH	04.066
Sannomiya M	09.033	Sartim MA	09.001
Santana AEG	09.055, 09.092	Sassaki GL	09.041
Santana APM	07.005, 07.006,	Sato VAH	03.004
	07.008	Saturnino-Oliveira J	09.072
Santana CVN	11.004, 11.026	Saúde-Guimarães DA	06.006
Santiago MB	06.079	Savegnago L	05.052
Santiago MD Santiago RM	02.035	Savino B	04.130
Santiago KW Santin JR	02.033	Savino B Savino W	
			04.045, 04.046
Santoro ML	05.045	Scaramello C	06.034, 06.041,
Santos AA Jr	01.019, 01.023,	0 0	06.076
	04.133, 08.004	Scavone C	01.018, 01.024,
Santos AA	04.120, 07.012		01.025, 01.039,
Santos AA	07.001, 07.002		02.049, 02.054,
Santos AAQA	01.005		11.033
Santos AG	04.011, 04.022,	Schenka A	04.057, 04.105,
	04.044, 04.082		08.006
Santos ARS	04.009, 05.017,	Scherrer JV	09.067
	05.037, 09.041,	Scheschowitsch K	04.032
	05.059, 05.072,	Schilter HC	04.077
	09.013, 09.017,	Schneider PH	05.052
	09.068, 09.088	Schowe NM	02.034, 02.052
Santos BLR	05.031	Schreiber R	11.010
Santos CBS	11.012, 11.014	Schroeder SD	05.067
Santos CF	06.080	Scolaro LL	06.071
Santos DA	04.034	Scopa IP	05.043
Santos DB	09.059	Scopinho AA	02.003, 02.036
Santos DF	04.008	Scopinho AA	02.040
Santos DLF	09.107	Scremin Paulino A	04.072
Santos DS	01.019, 01.023,	Serikava SMO	09.076
Salitos Do	04.133, 08.004	Serra CP	09.044
Santos ECS	09.073	Serra MF	01.003, 04.050,
Santos FA	06.030	Scria Wii	04.056, 04.127,
Santos FA Santos GB	04.001		04.128, 08.007
Santos GB Santos HAS	09.063	Sestito RS	
			02.047, 02.053
Santos IVF	04.029	Sette-Martins R	04.091
Santos Júnior JC	09.005, 09.053	Setti-Perdigao P	02.043
Santos KT	04.004, 04.020	Shang FLT	04.005
Santos KT	04.131	Shim D	04.077
Santos LFL	06.053	Shimada ALB	04.037, 04.078
Santos MCC	04.097	Shimizu-Bassi G	03.009
Santos MCLFS	06.005	Siba IP	03.022
Santos NSS	03.032	Silva AA	04.104
Santos PC	04.034		

Silva AAR	04.112, 05.008,	Silva PMR	01.003, 01.006,
	09.030, 09.049		04.018, 04.050,
Silva ACL	09.099, 09.100		04.056, 04.127,
Silva ADS	· ·		, ,
	09.034, 09.045	G'1 PG	04.128, 08.007
Silva AFS	09.053	Silva PS	11.011, 11.023
Silva AKD	09.107	Silva RBM	03.011
Silva AMS	04.113	Silva RBM	04.067, 04.133
Silva AR	04.090, 04.124	Silva RC	04.079
Silva BA	09.095		
		Silva RCMVAF	09.007, 09.068
Silva BA	09.099, 09.100	SILVA RM	01.009
Silva Barbosa SD	04.046	Silva RS	02.056
Silva BR	06.064	Silva RS	06.024, 06.032,
Silva BV	04.031, 05.036		06.035, 06.044,
Silva CC	04.076		06.064
Silva CD	09.046	Silva S	05.016
Silva CFE	09.042	Silva Santos JE	09.029
Silva CLCA	04.074	Silva SM	02.021
Silva CLM	01.001, 01.004,	Silva TA	04.007, 04.011,
	09.084		04.019, 04.054
Silva CMG	10.003	Silva TMS	09.095
Silva CR	04.118, 05.058	Silva VAO	01.033, 01.034
Silva CR	05.040	Silva VP	09.031
Silva DB	06.016	Silva-Barcellos NM	06.049
Silva DM	04.061	Silveira ER	09.050
Silva E L	09.042, 09.051	Silveira GL	07.012
Silva FH	06.058, 08.003	Silveira JWS	05.050
	· ·		
Silva Filho JL	04.045, 06.028	Silveira KD	04.011, 04.044,
Silva FO	03.032		04.082
Silva GC	05.027	Silvestrin RB	02.015
Silva GF	06.088, 09.003	Simão AAL	04.123
Silva GP	05.011, 09.010	Simão AFL	04.123
Silva JDP	06.001, 06.002	Simas AS	05.060
Silva JF	02.048, 05.075,	Simões RL	01.015
	06.051	Simões RR	06.011, 06.012
Silva JM	02.054	Simons SM	09.038, 09.083
Silva JPV	04.061	Siqueira AM	09.103
Silva JS	04.075	Siqueira EA	04.024
Silva JS	05.029	Siqueira RMP	04.065, 04.080,
Silva Junior ED	01.037	3-4	05.064, 09.087
		Cita IV	
Silva Junior EN	10.007	Sita LV	02.054
Silva Junior IF	09.048	Sivieri-Jr DO	06.015
Silva Junior V	09.034	Smaal A	06.082, 06.083
Silva K	02.001, 02.045	Smaniotto S	09.070
Silva KM	09.034, 09.045	Smiderle FR	09.041
Silva KO	09.014	Soares DdeM	04.028, 04.070,
Silva LL	04.113, 07.001	boares buem	04.125
		C 1 M D	
Silva LM	07.010	Soares de Moura R	06.010, 06.013,
Silva LMN	04.095		09.012, 09.016,
Silva LP	09.009		09.104
Silva M	03.005, 03.026	Soares EA	11.001
Silva MCC	09.040	Soares FA	10.013
Silva MD	05.072	Soares GFS	09.023
Silva MDA	09.044	Soares GM	11.007
Silva Medeiros AG	03.023	Soares LFM	09.005, 09.053
Silva MMA	05.005	Soares MA	09.005
Silva MO	09.077	Soares MBP	05.004
Silva MS	09.034, 09.045	Soares PMG	04.095, 07.005,
Silva OA	06.087		07.006, 07.008,
Silva OA Silva PCB			07.000, 07.008,
SIIVA FCD	09.034, 09.045		01.010

~ ~			
Soledade ES	04.025	Souza MC	04.045, 04.066
Soley BS	09.021, 09.046,	Souza MFV	03.018, 09.024,
	09.062, 09.090		11.017
Sônego F	04.073	Souza MHLP	04.095, 04.103,
Sonza DR	04.117, 05.074		04.112, 04.121,
Soouza IA	05.063 [°]		07.005, 07.006,
Sordi R	04.042		07.008, 07.010,
	10.011		07.000, 07.010, 07.011, 11.021
Sorgi CA		O DO	
Soriani FM	04.061	Souza PS	04.117
Souccar C	01.035, 01.036,	Souza RB	05.008, 09.030
	06.073, 06.081	Souza RS	04.082
Sousa AMA	02.034	Souza SA	03.003
Sousa BF	09.011, 09.037	Souza SMB	11.004
Sousa FCF	05.077	Souza TM	02.015
Sousa JMB	09.026	Souza	09.086
Sousa LFC	03.021, 04.019	Souza-Costa DC	11.015
Sousa LN	07.012	Souza-Filho MVP	04.123
Sousa LP	04.044, 04.061,	Souza-Martins R	04.110
Sousa Li			
G	04.137	Souza-Queiroz J	03.017
Sousa OT	09.023	Souza-Silva E	05.069, 05.070
Sousa PJC	06.025	Spadacci-Morena DD	05.045
Sousa RB	04.103	Speciali JG	11.011
Sousa RB	04.126	Spiller F	04.051, 04.064,
Sousa TA	01.033, 01.034		04.126
Sousa VR	09.098	Spolidório LC	04.002, 04.026,
Souto AA	01.019, 04.016,	1	04.027, 04.086
2000121	04.067, 08.004	Squebola Cola DM	04.057, 04.108
Souto FO	04.049, 04.064,	Staurengo-Ferrari L	04.049, 05.009
Souto Po		Stefanello MEA	
	04.073, 04.123,	Stelanello MEA	05.060, 06.055,
	04.126, 05.029		09.007, 09.029,
Souza A	02.024, 03.020,		09.060, 09.069
	03.028, 05.032	Steffen VM	09.028
Souza ACG	10.018	Stein AC	03.027, 09.004,
Souza ACM	06.006		09.091
Souza AES	09.023	Stein G	11.033
Souza AM	08.002, 08.005	Stern CAJ	03.012
Souza CL	03.010	Stoco SM	05.039, 05.046
Souza DG	04.005, 04.006,	Stolz ED	09.008, 09.079
20424 24	04.007, 04.011,	Strapasson RLB	09.060
	04.019, 04.022,	Strauch MA	09.057, 09.089
	·		•
	04.034, 04.044,	Sudo RT	04.012, 05.007,
	04.063, 04.082,		05.010, 06.007,
	04.083, 04.097,		06.020, 06.041,
	04.115, 05.043,		06.043, 07.003
	08.008	Sudo-Hayashi LS	04.052, 04.094
Souza EP	09.014	Sutti R	09.085
Souza GEP	02.041, 04.028,	Tadei SR	04.054
	04.070, 04.125,	Tagliapietra JI	11.021, 11.025
	09.001	Tagliati CA	09.093
Souza GR	05.025, 05.038	Takeshi FI	06.058
Souza IA	04.057, 04.108	Takiya CM	06.028, 08.002,
		Takiya Civi	08.005
Souza J	06.049	7D 11 4 T	
Souza JP	05.074	Talbot J	04.122, 04.129,
Souza KPR	03.036	_	05.025, 11.004
Souza LA	03.010	Tamae AC	10.006
Souza LHJ	02.034, 02.052	Tamascia ML	09.085
Souza LL	02.033	Tamashiro WMSC	04.111
Souza M	04.110	Tambeli CH	05.001
Souza MAV	09.016	Tamiozzo LLR	05.065
·- · · - ·			- · -

W EM	01 006 01 007	<i>T</i> 0 1 F	04.046
Tamura EK	01.026, 01.027,	Terra-Granado E	04.046
	04.055, 04.088,	Thibaut JPB	01.017
_	04.093	Thomé R	04.111
Tanae MM	06.073, 06.081	Timóteo RNPD	03.019
Tanus-Santos JE	06.004, 06.029,	Tirapelli CR	02.001, 06.004,
	06.021, 06.031,		06.008, 06.031
	06.037, 06.040,	Tirapelli DP	06.004
	06.060, 06.060,	Tófoli GR	05.039, 05.046
	06.074, 06.077,	Toma W	09.009, 09.032
	06.085, 08.001,	Tomaz MA	09.006, 09.057,
	11.002, 11.003,	TOTAL WITT	09.072, 09.089
	11.002, 11.003, 11.007, 11.010,	Tonso VM	02.044
	11.011, 11.015,	Tonussi CR	05.069, 05.070
	11.023, 11.028,	Torello CO	03.017
	11.031	Torres AFC	06.036
Tavares BM	07.008	Torres B	11.005, 11.019
Tavares de Lima W	04.003, 04.009,	Torres ILS	02.024, 02.056,
	04.023, 04.037,		03.020, 03.028,
	04.040, 04.052,		05.032
	04.078, 04.094	Torres JNL	04.103, 07.008
Tavares JD	06.089	Torres PA	03.018
Tavares JF	03.019, 09.027,	Tostes RCA	01.012, 01.030,
ravares or	09.034, 09.035,	rostes Ren	10.001
	09.036, 09.045,	Touyz RM	06.014
	09.048, 09.052,	Toyama MH	06.036, 06.053,
	09.058, 09.063,	<i>a</i>	06.059
	09.099	Tragante V	01.033, 01.034
Tavares LD	04.044, 04.082,	Travassos RA	09.099, 09.100
	04.083, 05.043	Trentin PG	01.006, 04.018
Tavares LP	04.061	Trevelin SC	04.073
Tavares RF	02.030, 02.051	Trevisan G	05.005
Teixeira AL	03.021, 04.085	Trevisan G	05.044
Teixeira AL	03.036, 04.136	Trindade LB	02.047, 02.053
Teixeira CCG	05.073	Tronco Junior MF	05.019
Teixeira JMR	09.005, 09.053	Trovo MC	03.024
Teixeira MC	06.049	Truzzi RR	04.089
Teixeira MM	01.013, 03.021,	Turato W	04.073, 04.126,
Teixena ww	04.005, 04.010,	Tarato W	05.029
		Testarat	
	04.011, 04.019,	Tytgat	05.006
	04.022, 04.028,	Tzanno-Martins CB	11.033
	04.043, 04.044,	Uchoa CRA	11.027
	04.061, 04.063,	Uchoa FDT	11.005, 11.019
	04.077, 04.082,	Val DR	05.008, 09.030
	04.083, 04.085,	Valadão DF	04.011, 04.022,
	04.097, 04.115,		04.044, 04.082
	04.130, 04.132,	Valadares MC	10.015
	04.134, 04.136,	Vale ML	04.103, 05.042,
	04.137, 05.043,		05.064, 09.047
	05.068, 08.008	Vale OC	11.021, 11.025
Teixeira SA	04.002, 04.020,	Valença SS	09.012
	04.026, 04.027,	Valenti VE	02.004
	04.030, 04.038,	Valenzuela JG	04.075
	04.087, 04.104,	Van Dyke TE	04.086
m 1 WOD	04.131	Varanda EA	10.010
Teles YCF	09.024	Vargaftig BB	04.003, 04.052
Telles C	11.016, 11.018	Vargas da Silva S	01.008
Tenório EP	09.055, 09.092	Vasconcellos MLAA	05.012, 05.013
Tenório JAB	09.052, 09.058	Vasconcelos A	09.093
Teodoro FC	05.019	Vasconcelos AR	01.024

Vasconcelos LF	05.077	Vilela MC	03.021, 03.036,
Vasconcelos MAM	04.080		04.022, 04.085,
Vasconcelos SMM	09.087		04.136
Vasconcelos TRA	10.009	Villa JKD	09.067
Vasquez EC	06.005, 06.018	Villalba MIC	09.093
Vautier P	04.072	Villarinho JG	05.058, 09.017
Veloso MP	05.023	Villarreal CF	05.004
Veloso RR	05.053	Viola JPB	04.024
Venditti MAC	02.010, 02.028,	Vital MABF	02.035
	02.029	Vitoretti LB	04.003, 04.052,
Vercesi AE	04.098		04.094
Vercesi JA	06.014, 06.024,	Von Poser GL	02.015, 09.004,
	06.044, 06.064		09.008, 09.091
Verdan ML	05.060, 09.069	Wang M	01.033
Verdoorn KS	06.019	Watanabe TTN	04.047
Vergara FMF	01.010	Webb RC	01.012
Vergana i Mi Vergnolle N	04.138	Werneck SMC	08.008
Verri Jr WA	04.035, 04.049,	Werner MFP	09.013, 09.019,
veili oi wa	04.075, 04.122,	Weiller Miri	09.013, 09.019, 09.020, 09.039,
	05.004, 05.009,		
		W7:111 F-A	09.041, 09.088
	05.029, 05.038,	Wilhelm EA	04.036
	05.051	Wong DVT	04.120, 04.121,
Viana AF	03.027, 09.008,		05.073, 07.008,
	09.091		07.011
Viana FA	09.050	Wuo-Silva R	03.031
Viana GSB	04.065, 09.087	Xavier FE	06.025, 06.026,
Viana VSL	07.004		06.087
Viana WP	09.024, 09.035,	Ximenes RM	06.059
	09.058	Ximenes VF	05.022
Vianna-Jorge R	11.016, 11.018	Xu D	05.009, 05.051
Victor ML	09.043	Yamamoto M	04.002
Vieira AM	01.014	Yamane T	09.065
Vieira AS	11.009	Yamashiro LH	04.028
Vieira AT	04.077	Yatsuda R	09.014
Vieira BAC	03.010	Yogi A	01.030, 06.014
Vieira CS	11.007	Yonamine CM	09.065
Vieira GC	10.009	Yoneyama B	02.022
Vieira IR	04.080	Yshii LM	01.018, 01.039
Vieira KST	02.009	Yunes RA	10.005
Vieira MAR	06.028	Zager A	04.041
Vieira PMM	04.079	Zaharenko AJ	05.006
Vieira RO	01.004, 01.017,	Zambelli VO	05.006, 05.014,
Vicina No	03.016	Zambem vo	05.028, 05.055
Vieira SAPB	09.002	Zamboni DS	04.082
Vieira SM Vieira SM	04.119, 04.122,	Zamith-Miranda D	04.024
vielia Sivi	04.129	Zammataro L	04.130
Vieira-de-Abreu A	04.124		
		Zampronio AR	04.092, 05.001,
Viel TA	02.013, 02.025,		05.019, 05.060,
	02.034, 02.042,	Z CD	09.060, 09.069
	02.052	Zamuner SR	09.064
Vieria LQ	04.082	Zanchet EM	06.011, 06.012
Vieyra A	06.016, 06.019,	Zanesco A	04.107
	06.041, 08.002,	Zangrossi Jr H	03.034
	08.005	Zanon NM	01.033, 01.034
Vigliano MV	05.011, 09.010	Zanoni CIS	04.020
Vilegas W	09.009, 09.025,	Zanotto-Filho A	09.080
	09.033, 09.076,	Zapata-Sudo G	04.012, 05.007,
	10.010		05.010, 06.007,
Vilela FC	07.013		

	06.020, 06.041, 06.043, 07.003
Zardo RS	04.031, 05.036
Zaroni ACE	06.089
Zarpelon AC	04.049, 05.029,
	05.051
Zoghbi MGB	04.029
Zuardi AW	04.041
Zuffellato-Ribas KC	09.046, 09.062,
	09.090
Zychar BC	04.099
Zyngier SZ	10.001